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A  review  on  the  recent  segmentation  and  tumor  grade  classification  techniques  of  brain  Magnetic  Reso-
nance  (MR)  Images  is  the  objective  of this  paper.  The  requisite  for early  detection  of a brain  tumor  and
its grade  is the  motivation  for this  study.  In Magnetic  Resonance  Imaging  (MRI),  the tumor  might  appear
clear  but  physicians  need  quantification  of  the  tumor  area  for further  treatment.  This is  where  the digi-
tal  image  processing  methodologies  along  with machine  learning  aid further  diagnosis,  treatment,  prior
and post-surgical  procedures,  synergizing  between  the  radiologist  and  computer.  These  hybrid  tech-
niques  provide  a second  opinion  and  assistance  to  radiologists  in  understanding  medical  images  hence
strocytoma
rain tumor grade
egmentation
eural networks
lassification

improving  diagnostic  accuracy.  This article  aims  to retrospect  the  current  trends  in segmentation  and
classification  relevant  to tumor  infected  human  brain  MR images  with  a target  on  gliomas  which  include
astrocytoma.  The  methodologies  used  for  extraction  and grading  of  tumors  which  can be  integrated  into
the standard  clinical  imaging  protocols  are  elucidated.  Lastly,  a crucial  assessment  of the state  of the  art,
future  developments  and  trends  are  dissertated.
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. Introduction

Over the past several decades’ diseases have fallen before the
cythe of human intelligence in the form of biomedical advances in
ur understanding of various diseases but still cancer, by virtue of
ts unstable nature, remains a curse to the mankind [1]. A qualified
linician visually examines many types of medical images, further
dentifies the probable locations and signs of malignant tumors.
his is the method followed for non-invasive diagnosis of tumors.
nitially, for the detection of a tumor, imaging systems are used
o record medical images. The captured images are passed through
arious software-based algorithms so as to segregate the suspicious
egion of the tumor from the healthy region in the image.

Image segmentation secludes the infectious region from rest of
he image. Treatment planning is assisted when an accurate seg-

entation method helps to determine tumor size and location. For
his purpose, a skilled clinician has to either set the initial condi-
ions or provide training data for classification. Various researches
ave been carried out to detect many types of the tumor based on
he extraction of visual information from medical images.

The current World Health Organization (WHO) guidelines for
rain tumor classification [2] are strictly histopathological, which

imits clinical application. This constraint triggers the applica-
ion of medical imaging for diagnosis and treatment planning
ncluding more automated methods. The ever-increasing amount
f brain MR  image data has created new opportunities for neu-
osurgeons and medical scientists at the same time burden of
xcessive accurate data analysis and diagnosis has become tire-
ome [3]. Hence computer-aided diagnosis can be implemented
o enhance physicians’ diagnostic capabilities and reduce the time
equired for accurate diagnosis. In current clinical studies and rou-
ine, MR  images are assessed either by depending on elementary
uantitative measures or based on qualitative criteria only. Hence
ubstituting the routine evaluations with greatly reproducible and
recise image processing routines and tumor substructure mea-
urements which can automatically inspect brain tumor scans
ould enhance improved diagnosis and treatment planning. The
ajority of the current algorithms used for the analysis of brain

umor targets on the glial tumor segmentation [4].
In medical imaging, segmentation is a mandatory task which

an be done manually by an expert with good accuracy but
ime-consuming. At the same time, fully accurate and auto-

atic segmentation approaches are not yet authentic. Currently,
or clinical application, partial automatic segmentation methods
re adapted. These time consuming and challenging tasks by
adiologists’ drives towards the demand for a semi-automatic
egmentation method. This could alleviate the drawbacks of auto-
atic segmentation method simultaneously the radiologists will

lso have control over the segmentation process. Several semi-

utomatic methods need only user initialization. Repeated user
nteraction is mandatory to assure accuracy.
 .  . .  . . . .  . . .  . . . . .  .  . . . . .  . .  .  .  . . .  . . .  . . . . . . .  .  . . .  .  . . . .  .  .  . . . . .  . . . . . . .  .  .  .  . . .  .  . .  . . . .  .  159

The review is further structured as follows: Image processing
and computer vision (Section 2), where we briefly summarized
about Preprocessing, Segmentation (with subsections on Manual
segmentation, Semi-automatic and fully automatic methods), Fea-
ture extraction, Feature selection, Dimensionality reduction and
Classification. Further (Section 3) the current trends in MRI-CAD
scheme are explained. Lastly, we  discuss the current state of the art
in the area of segmentation and classification that would benefit
grading of brain tumors and compared it to the clinical require-
ments.

2. Image processing and computer vision

The field of computer vision has the ultimate goal to use
computers to imitate learning and human vision. It also has
the ability to form inferences and take action on the basis of
visual inputs. The field of image understanding or analysis lies
between computer vision and image processing [5]. The general
computerized processes are low, mid and high- level processes.
Low-level processes involve basic operations like noise reduc-
tion by image pre-processing, image sharpening and contrast
enhancement. Mid-level processing includes segmentation and
classification. High-level processing involves performing cognitive
functions normally associated with vision.

Image analysis takes the aid of semi-automatic or automatic
methods to illustrate the captured images. The abundance of clini-
cal data generation has made it impossible to manually define and
segment the data in appropriate time. The medical image analysis
domain is divided into enhancement, registration, segmentation,
visualization, quantization and modeling [6]. Among this regis-
tration, segmentation and modeling are the most important and
challenging when it comes to brain tumor studies.

Despite the expert’s experience and skills, the manual qualita-
tive analysis is always bounded by the human vision system. The
reason is the inability of the human eye to discriminate between
several tens of gray levels [7]. The abundance of information con-
tained in an MR image is much more than what the human vision
can visualize because the present MRI  systems can produce images
equal to 65,535 gray levels [7]. This leads to using the computer as
the second eye to play the role of understanding high bit-depth and
high-resolution MRI  images. For instance, a mathematical frame-
work using both rough sets and fuzzy sets that deals with the
uncertainties associated with the human cognition process are
studied in [8].

2.1. Pre-processing

A wide variety of pre-processing techniques like linear, non-

linear, fixed, adaptive, pixel- based or multi-scale, are applicable
for different circumstances [6]. Applications where discrimination
between abnormal and normal tissue is delicate, precise interpre-
tations become severe for relatively high noise levels. The small
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ifference that exists between abnormal and normal tissues might
e perplexed by artifacts and noise often resulting in difficulty
f direct image analysis. At the same time, some improvement
n image visual quality is of great assistance in interpretation by

 medical specialist. Hence for subsequent automated analysis,
nhancing techniques are one of the pre-processing steps.

Enhancement techniques are used with two  aims. Firstly for
enerating improved images that can be utilized by a human
bserver. Secondly to derive images to be used in subsequent algo-
ithms for computer processing. Examples of former aim include
oise removal, contrast enhancement and sharpening details in an

mage while that of later includes the former examples extending
o edge detection and object segmentation.

A major problem faced during the segmentation process in MR
mages is the bias field. It is due to the radio frequency coil imper-
ections or defects in the acquisition sequences and hence called
ntensity non-uniformity. The aim of correcting bias field is to calcu-
ate the bias field and eliminate it from the measured image [8]. The
ias correction requirements in an MR  image in the pre-processing
tage is explained in [8,9].

Usually, the noise in the MR  images is due to the fluctuations
f the magnetic field in the coil [10]. The various inhomogeneities
ssociated with MR  images are noise, shading artifact, and partial
olume effect. The random noises associated with MR  images have
ician distribution [11]. Intensity inhomogeneity occurs because of
adio frequency non-uniformity during the data acquisition, which
ill result in shading artifact [11]. When more than one type of

issues or class takes up same voxel or pixel it is called partial vol-
me  effect. These pixels or voxels are generally called muxels [12]
xplains three algorithms for bias field correction.

An inherent trade-off exists between Contrast to Noise Ratio
CNR), Signal to Noise Ratio (SNR) and resolution in MRI  applica-
ions [13]. High contrast and high spatial resolution are mandatory
ased on the type of diagnostic tasks. A high SNR is a must in image
rocessing applications as most of the algorithms are noise sen-
itive. This highlights the need for applying noise filtering on MR
mages to preserve fine details of image and decrease image noise.
arious approaches to improve edge blurring effects, CNR and SNR
ere proposed in literature such as adaptive filters, anisotropic
iffusion filters and wavelet filters. Anisotropic diffusion filtering
echnique has shown good practical suitability because of its algo-
ithmic simplicity, computational speed and it assumes a Gaussian
istribution for noise. But during MR  data processing, a Gaussian
ssumption is not satisfactory for image noise as it shows Rician dis-
ribution, notably in low SNR regions. Hence modified anisotropic
lters were used to reduce this bias.

Different types of noise corrupt a medical image. But for accu-
ate observations, it is necessary to have precise images for a given
pplication. The procured MR  images are generally impaired by
peckle noise, Gaussian noise, salt and pepper noise etc. Usually,
he main limitation is neglecting local features like presence of pos-
ible edges and replacing the noisy pixels by some median value in
heir proximity. Hence especially at the high noise level, edges and
etails are not satisfactorily recovered. But image processing ana-

ysts affirm that for noise removal in the presence of edges, median
ltering is a superior choice than linear filtering [14].

In the pre-processing stage, another step required is intensity
ormalization. Reference [15] quotes, six such methods for MRI
uch as intensity scaling, contrast stretch normalization, histogram
ormalization, histogram stretching, histogram equalization and
aussian kernel normalization. Comparatively the best perfor-
ance was given by histogram normalization method but in [16] it
ays histogram equalization had limited success on medical images
s it obliterates the small details. Hence this limitation persuaded
he progress of adaptive and spatially variable processing tech-
iques. To be flexible to spatial and local variable details in images,
ocessing and Control 39 (2018) 139–161 141

the Wiener filter was  optimally designed. It’s a combination of
low pass and high pass filter with factors controlling its relative
weights; hence it is usually applied on Computed tomography (CT)
and MR  images. In the case of mammographic images, the con-
trast enhancement techniques that are nonlinear were particularly
used but contrast or edge enhancement accompanies with unde-
sirable amplification of noise. Hence a framework based on wavelet
was used to implement both de-noising and contrast enhancement
[17]. Hybrid filter integrated multi-resolution wavelet transforms
with an adaptive multistage nonlinear filter. It addressed noise sup-
pression and image enhancement along with decomposition and
selective reconstruction of wavelet based sub-images [18].

In the pre-processing stage, [19] used the N3 algorithm
for bias field correction, Statistical Parametric Mapping’s (SPM)
co-registration module for co-registration between scans for inter-
scan visual comparison and a multiplicative model for MR  signal
intensity normalization. In [20] adaptive histogram equalization
was done prior to glioma segmentation in the pre-processing stage
where intensity values of the image were made consistent across
MR image types, slices and patients. In addition to this, to isolate
the pixels of brain tissue from rest of the non-brain pixels SPM5
was used.

T2-w, Proton Density (PD) and FLAIR, are the generally used
types of MRI  in clinics [21]. These sequences can be fused at two
levels namely data and decision level. The former extracts feature
from all sources of data and use them for tumor segmentation and
in the later firstly segmentation is done in each source of data
and then based on some criterion; all the segmentation results are
fused. Ambiguity is reduced with more input data hence improving
the segmentation but, it leads to redundancy, thereby increasing
computation time and affecting the decision.

The separation of tumor sub-regions can merely be possible on a
combination of many modalities, which demands a pre-processing
step for accurate registration. The majority of algorithms uses some
set of pre-processing for image enhancement like de-noising, inten-
sity normalization, and bias field correction so as to balance the
effect of magnetic field inhomogeneities, registration and skull-
stripping [22].

Another challenge to the algorithms is that the data set may  be
collected from different MRI  scanners and feed as input to the algo-
rithms. This collection consists of MR  images of different intensities
because the MR  image intensities are not consistent across MRI
scanners. The other difficulties are MRI  scanners producing distinct
types of noise, inter-slice intensity variations, problems related to
the tumor when aligning and registering images, etc. Many types
of pre-processing steps are performed to eliminate these problems.
The focus on pre-processing stage of MR images before it is fed to
the classifier is important; else a failure in pre-processing stage
leads to whole system failure [23].

Usually, the background of an image does not contribute any
fruitful information at the same time increases the processing time
[14]. Hence to improve the processing speed and decrease memory
usage, remove background, eyes, scalp, skull, and structures that
are not the regions of interest. The Brain Surface Extractor (BSE)
algorithm which is used only for MR  images can be used for skull
removal [14,24]. The images are filtered using BSE removing irreg-
ularities, performing morphological erosions, detecting edges and
isolating brain. It also does image masking and surface clean up.

The pre-processing step in [25] mainly used skull stripping of
T1-w images followed by co-registering of T1-w and T2-w images.
The FMRIB Software Library abbreviated FSL has a Linear Image
Registration Tool (FLIRT) which was  embedded to automatically

calculate the transformation between T2- and T1-weighted images
for each patient.

Two  brain extraction algorithms namely 2D Brain Extraction
Algorithm (BEA) and 3D-BEA, for T2-weighted MRIs, are proposed
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n [24]. The reason for extraction of the brain from the T2-weighted
atasets is to reduce the file size of the MRI  and thus decreases
he transmission time in a network application. A brain mask is
btained using the Largest Connected Component (LCC) analysis
nd morphological operations, from which brain is extracted. 2D-
EA employs only 2D information of slices. When the concept of
CC fails for few slices, the available 3D information in neighboring
lices is utilized resulting in 3D-BEA. It has been experimentally
roved using 20 MRI  data sets that 3D-BEA performed exception-
lly well when compared to 2D-BEA and other prominent methods
ike BSE and Brain Extraction Tool (BET).

In [7] many algorithms like BSE, BET, Hybrid Watershed Algo-
ithm (HWA), Minneapolis Consensus Strip (McStrip) etc. were
eveloped for the extraction of brain tissue from undesired struc-
ures. Because of the frequency of exclusion and inclusion errors,

any of the semi-automatic and automatic brain extraction tech-
iques are not perfect in terms of robustness and accuracy [26]. Out
f these McStrip is an automatic hybrid algorithm requiring no user
ntervention. It is used for nonbrain and brain segmentation having
n advantage of integrating thresholding, non-linear wrapping and
dge detection.

.2. Segmentation

Object localization or boundary detection, estimation of bound-
ry etc. all belongs to the process of segmentation [27]. Human
yes effortlessly differentiate the structures of interest and extract
hem from background tissues but in algorithm development, it
s a great challenge. Segmentation guides the result of the whole
nalysis because the proceeding steps depend on the segmented
egions. The main principle of segmentation algorithms is intensity
r texture variations of images using region growing, deformable
emplates, thresholding, and pattern recognition techniques like
uzzy clustering and neural networks. Also, techniques like region
ased and edge segmentation, adaptive and global thresholding,
radient operators, watershed segmentation, hybrid segmentation
nd volumetric segmentation, supervised and unsupervised seg-
entation exists. A new approach was based on deformable models
hich are suitable for images having weak boundaries, artifacts and
oise. In this, a model having flexible boundary is kept in the prox-

mity of the region to be segmented and to fit the contour of the
egion, the model is repetitively adjusted.

Segmentation is accomplished by recognizing all voxels or pixels
elonging to the object or by identifying those making bound-
ries. The former uses pixel intensity and later uses image gradients
hich have high value at edges. Segmentation is usually considered

s a pattern recognition problem as it involves pixel classification.
In medical image analysis hybrid approach for segmentation

s done initially using the fundamental steps of segmentation
ollowed by time-consuming and robust elaborate techniques.
xamples of hybrid algorithms used for fully automatic seg-
entation of brain MRI  include thresholding, histogram analysis,

eformable templates and nonlinear anisotropic diffusion.
MRI  brain tumor segmentation methods are of two categories

ased on: generative models (rely heavily on domain-specific prior
nowledge about the appearance of both healthy and tumorous tis-
ues) and discriminative models (exploit little prior knowledge of
he brain’s anatomy and instead rely mostly on the extraction of a
arge number of low-level image features like raw input pixels val-
es, local histograms, texture features such as Gabor filter banks,
lignment-based features such as inter-image gradient, region
hape difference, and symmetry analysis). Classically used discrim-

native learning techniques are Support Vector Machines (SVM)
nd decision forests [4]. The drawbacks of generative models, as
ell as the calibration issues related to discriminative approaches,

ave rise to the development of joint generative-discriminative
rocessing and Control 39 (2018) 139–161

methods. Such methods employ a generative technique in the
pre-processing step to provide stable input for the successive dis-
criminative model which may  be trained to anticipate complicated
classes.

One discriminative-generative, one generative and eight dis-
criminative models were used by the participants of BRATS 2013.
Out of these, the main learning algorithm used by four participants
was Random Forests (RF) [4]. Many of the top-ranked algorithms
depended on a discriminative learning approach where, in the ini-
tial step local features of the image were produced and then a
discriminative classifier was used, which converted these features
into class probabilities.

Generally, in segmentation processes, an expert clinician man-
ually outlines the Region of Interest (ROI) with the use of a cursor.
The parameter such as threshold has to be automatically set in case
of automated computer-assisted segmentation. Even if MR  images
are from scanners of varying slice thickness, Field of View (FOV) and
relaxation times, an automatic technique must be robust so as to
generate steady segmentation. Hybrid techniques involving model
based methods and image processing are efficient methods for seg-
mentation [6]. Computer-aided techniques having semi-automatic
or automatic segmentation methods are used to mark the tumor
regions of MR  images but the former method employs user defined
ROI needing less computational time while the later needs high
computational time. So presently in most of the clinical studies,
manual segmentation or strict segmentation under the supervision
of an expert is carried out. This is because the segmentation perfor-
mance is affected by the degree of operator administration in terms
of time consumed [28]. Hence a necessity of automated method
comes up. [29] reviews on methods for Glioblastoma Multiforme
(GBM) segmentation from MR  images. The highest dice similarity
index was for region growing-FCM (Fuzzy C-Means) hybrid and
Expectation Maximization (EM).

Segmentation algorithms can be categorized based on the fea-
tures used. Like the clustering or classification methods that utilize
voxel-wise texture and intensity features or the edge- or region-
based techniques which use deformable models [22]. Clustering
groups data on the basis of similarities and works in an unsuper-
vised manner while classification demands training data to learn a
model.

Radiologists with experience and expertise can visually ana-
lyze MR images and can make accurate tumor prediction. They
differentiate among different tumors based on heterogeneity or
homogeneity in texture or by considering hypo-, hyper- or iso-
intensity criteria. These features which are extracted visually
provide guidelines for finding appropriate descriptors of mathe-
matical feature for Computer Aided Design (CAD). So they take
the guidance of a CAD system to eliminate subjective variability,
ambiguity and make an objective decision concerning the class of
the tumor [30]. [31] Clearly states that the reappearance of tumor
growth at the reception boundary is a common aspect, which is
another motivation to develop perfect segmentation so that the
boundary is defined exactly, resulting in no tissue remains after
resection.

2.2.1. Manual segmentation
Traditionally the information obtained by a skilled radiologist,

on manual segmentation is highly reliable. Also, the final scrutiny
must be done by the medical doctors and they have the ultimate
control over the segmentation process. When segmentation was
accomplished by various clinicians, the variability analysis among
them in segmenting was studied in [32]. From the data of ten

patients, GBM was segmented by four clinicians, once manually
considering slice by slice, by sketching boundaries and other time
employing Slicer’s grow-cut segmentation module. The time con-
sumed for manual segmentation was a mean of ten minutes and for
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Fig. 1. T1c MR Images exhibiting

he semi-automatic segmentation using 3D Slicer was  five minutes.
he time needed for the later was 61% on an average of the time
eeded for a neat manual segmentation.

In [20] because of interobserver variations by at most three of
our observers, pixels classified as glioma were assessed as real
lioma tissue, which highlights a drawback of manual segmenta-
ion. It also quotes 28% inter-observer variability on an average and
0% intra-observer variability when manual tumor segmentation

s done over a span of one month. This shows a clear evidence for
he necessity of user independent and time efficient methods for
btaining glioma volume. Manual segmentation was performed by
wo neuro-radiologists in [25] using ITKSNAP by manually outlin-
ng the edges between abnormal areas and normal tissues on the
D Spoiled Gradient Echo (SPGR) images.

The tumor outer margin is often defined manually by the radi-
logist on T2 and T1c images by thresholding edges between the
yperintense T2/T1c lesions and the neighboring healthy tissue
22]. Clinical measurements of the tumor size are generally the
roduct of minor and major axis for 2D measurements or that of
he three main axes of a tumor in case of 3D measurements. In
17] grading or manual characterization of tumors was  done by
xperts by following various protocols like stereotactic or neuro-
avigational biopsy, clinical history of the patient, experience, and
nowledge in identifying the group of disease from image visual
eatures and at times CT imaging features.

An experienced radiologist uses pathological details to clas-
ify brain tumors in MR  images. These details are texture patterns
hich may  be heterogeneous or homogeneous and signal intensi-

ies which may  be iso-, hypo- and hyperintense. Tumors exhibiting
so-, hypo- and hyperintensity have the same intensity as, darker
han as and brighter than that of brain tissues respectively. Het-
rogeneous tumors illustrate varying signal intensity areas like the
ystic and the necrotic part inside the tumor while homogenous
umors display comparatively similar signal intensity over their
ntire area as in Fig. 1 [33].

A final percept is produced by fusing different visual features
rom 2&3D images by the human cognitive process. So during diag-
osis, the perception of the ROI greatly relies on features describing
he change in contour, motion, luminance and different 3D cues.
hese features aid radiologists in analyzing the brain MRI  slices
26].

Abundant information is provided by MR  images regarding the
rain soft tissue anatomy but, this makes manual interpretation
ifficult. Hence there arises a demand for image analysis tools that
re automated [18]. However, manual segmentations are widely
sed to evaluate the results of semi-automatic and fully automatic
ethods [34]. But ultimately the completeness of a methodology is

ssessed by the manual segmentation which is the Gold standard
35].
.2.2. Semi-automatic segmentation
Semi-automatic methods require the interaction of the user for

hree main purposes; initialization, intervention and evaluation.
 tumors [30] (2-column fitting).

Initialization could be defining an ROI, containing the approximate
tumor region, for the automatic algorithm to process. Interven-
tion is needed to adjust parameters of pre-processing methods. An
automated algorithm can be driven towards the desired result by
receiving feedbacks and providing adjustments in response. Finally,
the user can evaluate the results and modify or repeat the process
in accordance with the requirement [34].

For multimodal brain tumors, a semi-automatic segmenta-
tion method was presented in [36]. It had advantages of quick
segmentation within a minute, easy initialization and efficient
modification. A user had to manually sketch ROI approximately
covering the tumor. The level set approach, edge and region-based
active contours were the image analysis techniques combined in
the algorithm.

A semi-automated segmentation method to figure out resid-
ual/recurrent tumor volume of GBM, for faster volumetric
assessment, was  worked out in [37]. Volumetry was  performed
by manual segmentation and Computer-Assisted Volumetry were
compared. The inter-observer correlation was calculated among
volumetric, 2D and 1D technique. Dataset of 29 patients who had
GBM was  analyzed. Disagreement in the status of disease between
1D and 2D, when correlated with computer-assisted volumetry,
was 3/29 and 5/29, respectively. Less than 1 min and 9.7 min
were the segmentation mean time for computer-assisted volume-
try and manual methods respectively. Volumetric measurements
gave the highest inter-observer correlation compared to 1D and
2D measurements. Their work concluded that fast and reproducible
volumetric assessment was possible using computer-assisted vol-
umetry.

AFINITI (Assisted Follow-up In Neuro-Imaging of Therapeu-
tic Intervention) is a semi-automatic software pipeline for the
segmentation of GBM proposed in [25]. Both the benefits of voxel-
based and deformable shape-based segmentation algorithms were
embedded into the software pipeline. It took approximately 20, 4,
less than 1 min  for the automatic process, interactive refinement
process and for output without correction respectively for each
dataset. But for manual segmentation, the time varied from 30 to
90 min  based on the tumor characteristics. The AFINITI software
pipeline is freely available on the web.

The Random Walker algorithm with priors (RW PR) is an inter-
active segmentation tool which was  tested on 3D CT image of the
knee [38]. User interaction is repeatedly needed to assure improved
accuracy even though most of the semi-automatic methods have
only user initialization. There is a need to quicken these techniques,
specifically in 3D, so as to reduce the time consumed for receiv-
ing input information and obtaining the output. This refereed work
explains a method to speed up semi-automatic method which is
slow due to human intervention.

An inability often noticed in automatic tumor segmentation
methods is that they cannot segment complex boundaries of het-

erogeneous tumors and consumes high computational time. But
they work well to segment solid homogeneous tumors or those
with peripheral enhancement [33]. At the same time since ROI  is
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ser defined for semi-automatic methods, it consumes less time for
omputation [39]. Results in [20] indicate that tumor volume mea-
urement, for determining tumor growth quantitatively by use of
oth automatic and manual segmentation routine is not adequate.
ther methods like adaptive template-moderated classification or

hreshold-based, semi-automated methods may  be used for quan-
ification of tumor volume, invasion and growth.

.2.3. Fully automatic segmentation
As MRI  is associated with a huge information repository, manual

nterpretation of each image becomes impossible, paving way for
utomated tools development [16]. In Fully automatic methods, the
umor contours are obtained without any human intervention and
re very attractive in theory. When the type of tumor doesn’t fit the
egmentation model as learned from the training dataset, the seg-
entation result may  be erroneous. Researchers [36] proposes an

lgorithm that automatically segments brain tumors using Markov
andom field model, based on super-voxels and terms that cap-
ure the intensity probabilities and edge cues. Another research [40]
hows an automatic segmentation for high-grade gliomas including
heir sub-regions at the same time differentiating between edema,
ecrotic core and active cells. This discriminative approach relied
n decision forests. The validation was done on two cases of grade
II tumors and 38 cases of grade IV tumors obtained from multi-
hannel MR  images. These automatic outputs were suitable for
easurement of tumor volume and aided interactive treatment

lanning.
A study aiming at recurrent glioblastoma was proposed in [19] to

mprove efficiency and accuracy of treatment response assessment
utomatically. A modified k-Nearest Neighbor (kNN) classifica-
ion method was used on 59 longitudinal MR  Images from 13
atients to assess the changes in tumor volume. This method
as then compared with manual volumetric measurements and
acdonald’s criteria. Even for all scans with infiltrative tumors hav-

ng unclear borders, this method was suitable. A high correlation
xisted between the manual tumor volume measurements and the
utomatic method (r = 0.96) but their match with Macdonald’s cri-
eria was only 68% even though these outputs were validated using

agnetic Resonance Spectroscopy (MRS) as well as by a neuro-
adiologist.

Research [20] characterized gliomas from Dynamic Suscepti-
ility Contrast (DSC) imaging, to find out whether tumor volume

s calculated using FCM clustering gave identical diagnostic effi-
iency as the manual definition of tumor volumes. It took nearly

 min  to produce a binary glioma volume per patient by this method
nd 10 min  manually. When the low-grade and high-grade glioma
olumes were compared, the automatic method showed greater
ensitivity than manual method: 83% for low-grade gliomas and
9% for high-grade gliomas. Although DSC imaging shows pos-
ibility in the characterization of gliomas prior to surgery, these
ethods are confined to leading research-oriented institutions

nly.
Automatic tumor segmentation using multi-spectral data

nalysis [19], Artificial Neural Networks (ANN) [16,41], SVM
27,33,42–44] and knowledge-based FCM clustering [20] tech-
iques are promising methods. The benefits of performing tumor
egmentation automatically are efficiency in time, the absence of
nter- and intra-observer variability and tumor characterization
sing consistent benchmarks.

.3. Feature extraction
Feature extraction can be defined as the process of transform-
ng or converting an image into its group of features. The different

ethods employed for feature extraction includes texture fea-
ures, co-occurrence matrix, Gabor features, wavelet transform
rocessing and Control 39 (2018) 139–161

based features, decision boundary feature extraction, minimum
noise fraction transform, nonparametric weighted feature extrac-
tion and spectral mixture analysis. For feature reduction principal
component analysis, linear discriminant analysis and independent
component analysis are used. Integration of the feature extraction
with the feature reduction algorithms leads to accurate systems
that use less number of features that can be extracted with less
computational cost [16,45].

The tumor type and grade are the two  main factors that decide
the features used for brain tumor segmentation. This is because
diverse types and grades of tumor exhibit variations in appear-
ance that may  be shape, location, regularity, contrast uptake etc.
The commonly used features are the image intensities assuming
that different tissues have varying gray levels. Local image tex-
tures are one more type of features generally used since different
areas of the tumor shows varying textural patterns. The features
based on alignment use spatial prior knowledge. The combina-
tion of alignment-based and textural features showed considerable
improvement in performance. For growing a contour towards the
tumor frontiers, edge-based features or intensity gradients can be
used [22].

For feature extraction, texture can be modeled as a 2D array
of gray level variation. Such a pattern matrix employed to find
the image texture pattern is called a Gray Level Co-occurrence
Matrix (GLCM) [46]. This statistical method is otherwise called
gray-level spatial dependence matrix as it provides the spatial rela-
tion between pixels. The image is analyzed on different resolution
scales in wavelet feature extraction which uses wavelet transform.
Then the image is converted into a multi-resolution image with
many frequency components. After this conversion, the image spa-
tial and frequency characteristics can be analyzed together.

The key feature recognition is a crucial aspect of designing
an efficient expert system. Astrocytoma grade determination is
possible when the algorithm can find characteristics of tumor con-
sidering patient age also as a feature. Indeed features are extracted
so as to decrease memory, time and data [47]. Feature extraction
is essential because results are directly computed based on the
extracted feature data [3]. Effective discrimination of features make
up an optimum feature set simultaneously reducing redundancy of
feature space to avert dimensionality problem [16].

Traditionally used features like image intensities, textures,
edges, and alignment doesn’t necessarily associate with actual
anatomical meanings of a brain tumor because for the same patient,
same body region using the same scanner, MRI intensities within
the same MRI  modality may  differ. Hence obtaining additional fea-
tures that denote relevant anatomical meanings for tumor is of
significant importance in tumor segmentation. Wavelet transform,
Independent Component Analysis (ICA) and Fourier transform can
be used for obtaining essential features from MR  images [18].

In assessing gliomas various diagnostic factors that are non-
pictorial like calcification, blood supply, hemorrhage, edema and
age have taken importance. The most modern studies utilize MRS
features or combination of spectroscopic and textural features
to differentiate among brain tumor types. Whether the studies
employed the latest classifiers or statistical analysis methods,
MRS  features have proved in providing an added value in precise
brain tumor characterization [48]. Some techniques are based on
extremely high dimensional features which pose difficulty in terms
of memory storage [23]. Feature extraction plays a crucial step in
segmentation process because extracting feature set is complicated
as features vary from one image to another image [49].
2.4. Feature selection and dimensionality reduction

The existing methods utilize not many features for portraying
the tumor pathology and none of the works used the entire features
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n an exhaustive manner. But, the use of complete heterogeneous
nformation resulted in high-dimensional feature vectors that con-
iderably decreased the system accuracy. Hence, to design robust
rain tumor descriptors of appropriate size that decreases unim-
ortant information, a reliable feature selection method is to be
dopted.

More efficient techniques use lesser number of features, using
imensionality reduction, but the reduction in the number of
eatures is often at the cost of reduced accuracy [41]. Feature selec-
ion algorithms popularly used are Genetic Algorithm, Sequential
ackward Selection (SBS), Sequential Forward Selection (SFS), and
article Swarm Optimization (PSO) [45], while Principal Compo-
ent Analysis (PCA), kernel PCA and ICA help in dimensionality
eduction [21]. Feature selection improves the efficiency of learning
odels by reducing the effects due to the curse of dimensional-

ty, hastening learning process, improving generalization capability
nd enhancing model interpretability. Neglecting this stage leads
o huge dimensionality in feature space and poor classifier perfor-

ance [50].
According to [51], the most popular methods of feature selec-

ion are PCA, ICA, and Genetic Algorithm (GA). PCA converts feature
pace of input into a feature space of lower dimension using largest
igenvector of the correlation matrix. While ICA converts it into a
eature space of dimensions that are independent of each other.
A searches for the optimal feature set by evaluating the search

esults on the basis of an evaluation function. This evaluation func-
ion computes how appropriate the chosen features are for the
lassification problem.

When the aim is to convert the input feature set having many
nterrelated variables into a lesser dimension, at the same time
etaining most of the variations to process the data faster and effec-
ively, PCA is the suitable approach [52]. While performing PCA, it
s usual to maintain a minimum set of principal components having
t least 97% of the variance.

Many methods used for feature selection was explained in [53]
hich are appropriate for biomedical image classification. Three
ifferent techniques are analyzed namely Multiple Kernel Learning
MKL) which excludes feature subsets having similar attributes, a
A based approach having an SVM as decision function and Recur-
ive Feature Elimination (RFE) using many classifiers. The best
echnique suggested was SVM-RFE although MKL  uses lesser num-
er of features. The RFE technique focused on co-occurrence matrix
eatures at the cost of extreme instability in the selected number
f features while MKL  selected wavelet based texture features.

In statistics and machine learning, the most important and
ppropriate information can be acquired by feature selection.
he work [42] explains three main methods for feature selection
amely wrapper model, embedded model and filter model. First

s the filter model having the advantage of low cost but it fully
voids the impact of the learning algorithm. Due to the filter mod-
ls’ disadvantage, came up the second category, the wrapper model
hich considered the interaction between the training set and algo-

ithm. Even though wrapper models gave increased accuracy, it
s computationally expensive. Then learning algorithm was  inte-
rated with weighting procedure or variable selection in case of
mbedded methods.

A feature selection technique having two steps of feature rank-
ng and selection is proposed in [54]. On the basis of each features
iscriminating power, the feature ranking method calculates a rank
er feature. Further, the features possessing top rank are sustained
o as to create a feature vector having only the relevant features.
issimilarly, the feature selection method removes redundant fea-
ures and concentrates on selecting discriminative features. Hence
erging feature selection and ranking results in fewer features

y excluding redundant and irrelevant features. This combination
ocessing and Control 39 (2018) 139–161 145

gave better classification accuracy than compared to the applica-
tion of feature selection method alone.

Further dimensionality reduction increases the classification
accuracy; even though kernel-based methods are less sensitive to
input space with high dimension. To handle smaller data sets and
input space with higher dimension SVM is the common technique
[42]. As stated in [49] some of the extracted features may degrade
the classifier performance and all the features may  not be discrim-
inant enough on all the images. In reality, the process of extraction
and selection of features plays a vital role in determining the seg-
mentation performance.

2.5. Classification

In some approaches, segmentation problem is transformed into
a classification problem and a brain tumor is segmented by training
and classifying. Generally, a machine learning classification method
for brain tumor segmentation requires large amounts of brain MRI
scans with known ground truth from different cases to train on.
Mainly, artificial intelligence and prior knowledge are combined
to solve the segmentation problem. Currently, high segmentation
performances are obtained by deep learning methods [34].

Factors of consideration in the design of an optimum classi-
fier include (a) classification accuracy, (b) algorithm performance,
(c) computational resources [16]. The brain MRI  classification is
achieved using supervised techniques like ANN, SVM, k-NN and
unsupervised classification techniques such as Self Organizing Map
(SOM) and FCM.

Automatic brain tumor segmentation can be of two  types
namely discriminative and generative methods. Previous studies
indicate that methods based on discriminative classification were
the best performing in general among other automatic methods
[34,36]. Discriminative methods learn the relationship between the
input image and the ground truth by relying on features and fea-
ture extraction [40]. In most cases, they use supervised learning
techniques requiring large data set with the valid ground truth. On
the other hand, generative methods generate probabilistic mod-
els by using prior knowledge like location and spatial extent of
healthy tissues. Previously obtained atlases of healthy tissues are
used to extract the unknown tumor compartments [34]. However,
converting prior knowledge into suitable probabilistic models is a
complicated task.

Steps followed by the discriminative method of segmentation
are pre-processing, feature extraction, classification and post-
processing steps.

1. Pre-processing step usually include noise removal, skull-
stripping and intensity bias correction.

2. After pre-processing, image processing techniques are employed
to extract features that represent each distinct tissue type
effectively. Features like intensity, texture, asymmetry-related
features; Discrete Wavelet Transforms (DWT), textons, multi-
fractal Brownian motion features, first order statistical features,
intensity gradients and edge-based features are some examples.

3. By using these features different types of classifiers; SVM, Neural
Networks (NN), kNN, SOM, RF are implemented.

4. In some cases, results of the segmentation are refined to increase
performance. Conditional Random Fields (CRF) and Connected
Components (CC) are among the popular choices.

In contrast to traditional classification methods, in which
extracted features are fed into networks, Convolutional Neural

Networks (CNN) automatically learn representative complex fea-
tures directly from the data itself. Hence, research on CNN based
brain tumor segmentation mainly focuses on network architecture
design rather than image processing to extract features. CNN take
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Fig. 2. Typical methodology of M

atches extracted from the images as inputs and use trainable con-
olutional filters and local sub-sampling to extract a hierarchy of
ncreasingly complex features [34].

. Current trends in MRI-CAD scheme

The following section gives detailed methodology of various
AD schemes used for brain tumor classification. The method-
logies are subdivided into categories as fully automatic and
emi-automatic 2D & 3D user interaction methods. In all the
ethodologies the framework is as shown in Fig. 2.

.1. Fully automatic 2D & 3D user interaction methodologies

.1.1. Fuzzy logic
A type-II Approximate reasoning method was used with a com-

ination of the median, unsharp masking and Wiener filter for
reprocessing in [28]. The results after preprocessing were sharp-
ned edges, reduced noise, and the overall output was superior to
hat of using a single filter. The system determined tumor using
bnormality cluster and the mass effect using the Cerebrospinal
luid (CSF) cluster. For approximate reasoning, the rule base con-
idered three parameters namely patient age, tumor shape (mass
r cystic) and mass effect existence. When considering the tumor
hape if it is mass, the tumor could be grade III or II and if they are
ystic then it could be grade IV or I.

In [10] segmentation is done using FCM and K-Means clustering
ethod. Out of both FCM clustering produces better segmentation.

lassification is done by using the Generalized Regression Neural
etwork (GRNN), Radial Basis Function (RBF), Probabilistic Neural
etwork (PNN) and Fuzzy Probabilistic Neural Network Classifier

FPNNC). It was concluded that even though the computation time
as high for FCM, mean square error was less for FCM than K-Means
ethod. Hence, the accuracy was higher for FCM comparatively.
It is lucidly depicted in [55] that the use of a single plane of a

ingle patient gives insufficient information about the tumor. The
ocus was on developing automated tumor detection for differenti-
ting Astrocytoma from MR  image by using an interval Type-2 fuzzy
ystem. The preprocessing is carried out using Type-2 Fuzzy Image
nhancement (T2FIE) technique and segmentation using Interval
ype-2 Fuzzy set theory and relative entropy. Collaborative Fuzzy
lustering (CFC) is used for feature extraction. In approximate rea-
oning step, an astrocytoma is detected and differentiated based on

he features extracted by firing eight defined rules.

In contrast, a fully automatic classification method for MR
mages employing Multi-scale Fuzzy C-Means (MsFCM) i.e. robust
o low-contrast and noise is proposed in [9]. After anisotropic
AD schemes (2-column fitting).

diffusion filtering, the MsFCM algorithm does classification from
coarsest to finest scale. The class types have to be initially esti-
mated as it is an iterative algorithm. Images having distinct quality
were synthesized so as to verify the algorithm on poor contrast
images. It is seen that FCM and Modified Fuzzy C-Means (MFCM)
gave a poor performance as contrast decreased, while MsFCM still
achieved more than 80% overlap ratio.

For neovasculature assessment and brain tumor detection, a
multi-stage automatic method is proposed in [56] using six main
stages. The series of MR  images are registered by means of brain
symmetry. The low and high-grade gliomas are differentiated using
relative Cerebral Blood Volume (rCBV) perfusion maps. The first
limitation of this method is that manual correction is needed for the
detection of brain symmetry line and registration, particularly in
circumstances when the tumor affects the brain fissures. Secondly,
automatic determination of rCBV threshold may  be impossible.
During diagnosis, a skilled radiologist must examine its value.
An advantage is that for each examination the threshold can be
updated in the CAD workstation. In this work, a differential image
approach is used for tumor segmentation and Kernelized Fuzzy
C-Means (KFCM) approach is applied for extraction. The rCBV is
an indicative of tumor angiogenesis. MR  series are still success-
fully being practiced as a differential diagnostic tool and hence as
of now Perfusion Weighted Images (PWI)/rCBV is hardly used for
brain tumor segmentation.

A similar motivation was  used for low/high astrocytoma tumor
grade identification non-invasively using MRI  in [47]. This work
focused on grade determination solely from MR  images rather than
using biopsy or MRS. The automatic selection of dominant param-
eters is done using Shuffling Frog Leaping Algorithm (SFLA). It is a
technique that combines advantages of PSO algorithm and Memetic
Algorithm (MA). Results revealed that shape based features have
maximum applicability. In this work compared to other features,
area showed much differentiation among the two  grades. So area
calculation was  a major factor, as tumor size greatly determined its
grade. The FCM segmentation was  concluded to be the best solu-
tion for tumor grade identification among other methods. It was
also deduced that the Naive Bayes classifier could classify at a time
only one image while Learning Vector Quantization (LVQ) and SVM
classifiers could be applied for bulk image classification.

A hybrid clustering method using K-means combined with FCM
algorithm is used for image segmentation in [14]. The proposed
technique has benefits that K-means was able to find a tumor
quicker than FCM but FCM found tumor cells that went undetected

by K-means. Especially for malignant tumors, K-means suffered
from incomplete tumor detection but the algorithm works well
on large data sets and is simple and fast for the same. FCM, when
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ompared to K-means, retains more information about the orig-
nal image for accurate malignant tumor detection. Research [8]
roposes a generalized rough FCM for MR  images with intensity

nhomogeneity to segment it into the background, CSF, White Mat-
er (WM)  and Grey Matter (GM). FCM and rough c-means were
ombined in this hybrid clustering approach.

.1.2. Adaptive neuro-fuzzy inference system
The distinction of brain anomaly from normal brain tissue is

one using Adaptive Neuro-Fuzzy Inference System (ANFIS) on the
asis of automatic seed point selection range in [46] but in the
eferred work [57] it classified the brain tumor regions into benign
nd malignant, also in [50] into 5 types of brain tumors. For pre-
rocessing, [46] used an anisotropic diffusion filter that preserved
he edges and removed noise. Features used were GLCM, Local
inary Patterns (LBP) and wavelet characteristics which are used
o train the ANFIS. The other inputs to ANFIS included extracted
eatures from pathological images, tumor area, homogeneity and
ntropy. In [57] image components were extracted from the binary
mage using morphological filtering. For accuracy improvement,
he post-segmentation process was done using the morphological
perations like morphological opening, closing, dilation and ero-
ion. An advantage of ANFIS is its fast convergent time. The ANFIS
ses fuzzy rules and fuzzy reasoning that is based on fuzzy set
heory. ANFIS is compared with ANN and kNN in [50].

Similarly an image segmentation technique [45] for locat-
ng Astrocytoma brain tumor grade I to IV proceeds firstly with
reprocessing, feature extraction using GLCM, feature selection
GA + fuzzy rough set) and finally image segmentation using ANFIS.
wo membership functions (high and low) were used in this work
long with 100 if-then rules forming the ANFIS input.

.1.3. Support vector machines
Detection and delineation of tumor slices and tumor area

espectively were done by a fully automatic system in [15]. The
istogram inequality among the brain hemispheres is used for
umor slice detection hence the limitation comes when the tumor
s in the midline. Regarding feature extraction, initially spatial, fre-
uency and multi-resolution texture information was provided by
he Gabor wavelet method which captures locality, frequency and
rientation. Then the statistical method applied Gray Level Run
ength Matrix (GLRM), GLCM, LBP and Histogram of Oriented Gradi-
nt (HOG). The intensity relation among pixel groups or two  image
ixels was demonstrated by these feature extraction methods. It
as also concluded that with the application of texture based fea-

ures, noise reduction decreased the classification accuracy.
Similarly characterizing MR  images into malignant or benign

umors was done by an automatic CAD system based on a group
f classifiers in [54]. Using histogram analysis, the number of clus-
ers in the brain was determined. 3D and 2D tumor features were
xtracted to evaluate effective differentiation among malignant
nd benign tumor using Haar wavelets. The feature selection was
one using ICA and feature ranking using information gain. The
rediction of class was done by combining the decision of multi-
le classifiers like ANN, kNN and SVM. For this purpose the three
lassifiers decision was integrated using combination rules of the
roduct, sum, median and mean. Lastly, the image is labeled to the
lass with the greatest value. This method took 12 s with complete
eature vector and 4–5 s with reduced feature set respectively for
rain tumor characterization.

In [3] by using the correlation between deformation of brain
ateral Ventricles (LaV) and compression from brain tumors, the

aV deformation is measured and transformed from the 2D images
n axial view into feature data. The proposed method applies
ynamically created template LaVs by taking advantage of brain
emisphere symmetry. The proposed method aligns and models
ocessing and Control 39 (2018) 139–161 147

LaV deformation through 3D viewing. For separating CSF tissues,
a dynamically wavelet-incorporated FCM (dwFCM) is used. An
assumption is made in this work that in most brain tumor-affected
cases, the tumor and edema exist in one hemisphere and with this
assumption; the template image is obtained by mirroring the less
tumor-affected hemisphere.

Brain segmentation using Vector Field Convolution (VFC) active
contour model followed by classification of brain tissues into GM,
WM and CSF is done by three SVM classifiers in [27]. The anisotropic
diffusion filter was used to correct radio frequency inhomogeneity
which is an iterative filter. The Euclidean distance between pixels
and intensity squares were useful and simple features were used
for brain segmentation. Research [8] concluded that these features
showed better outputs only in the absence of intensity nonunifor-
mity and high noise, so substituting them with statistical features
can provide a better result.

Three analytic approaches to eliminate features that had no
or less impact on classification were proposed in [43]. They were
namely, PCA, ICA and Pearson’s Correlation Coefficients (PCC). The
patient age and whole-tumor Cerebral Blood Volume (CBV) his-
tograms were used for tumor grading using SVM with RBF kernel
approach. PCA gave the best classification accuracy of 85% when
decreasing the feature vector to 3 from 101 principal components.
In this work, age is the best predictor as it has no relation with other
features and not a hemodynamic parameter.

3.1.4. Artificial neural networks
The moment invariant feature extraction was used to classify

MR images as malignant, benign and normal using NN classifier by
[58]. Based on 7 rotation invariants using cubic order differentia-
tions, the different image features were extracted. Feature selection
is done by rule pruning techniques based on binary Association
Rule (AR). It combines high-level knowledge provided by specialist
and extracted low-level image features. It excludes rules that are
conflicting and the features selected by the rule pruning technique
are the input to the classifier. An advantage of this work was that
moment invariant feature extraction method does shape distinc-
tion on the basis of few exceptional features. In this AR based NN
classification, the features extracted were reduced from 7 to 3. A
disadvantage of AR method is in identifying rules that give min-
imum support values and minimum confidence provided by the
user.

DWT  is used for obtaining the MR  image features, followed by
feature reduction using PCA and finally classification by two clas-
sifiers namely kNN and Feed Forward Back Propagation Network
(FFBPNN) in [59]. Image analysis at different resolution levels is
done using an efficient tool for feature extraction i.e. the wavelet
transform but at the cost of computational expense and huge stor-
age. Simultaneously for dimensionality reduction of the feature
vector and increase of the discriminative power, PCA was used. The
input matrix size was  reduced to 7 from 1024.

An automated brain tumor grade classification employing Feed
Forward Neural Network (FFNN), Multilayer Perceptron (MLP) and
Back Propagation Neural Network (BPNN) is proposed in [60]. The
features of the brain tumor grades are extracted using GLCM and
GLRM. GLRM is the successive pixels having similar gray level inten-
sity along certain orientation and GLCM extracts statistical features
of second-order. In GLRM fine textures have a short run with sim-
ilar gray level intensities while coarse textures consist of long run
of varying intensities. Fuzzy entropy measure is used to select the
optimal features. Compared to other classifiers BPNN outperforms
them with 96.7% classification accuracy.
To prepare the training data, thirteen Harlick texture features
were extracted from each MR  image. This data was introduced to
three ANNs (FFBPNN, Recurrent and Elman network) as input and
target vectors [61]. Results explain Elman Network, with log sig-
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oid activation function, to be the best among other ANNs with a
erformance ratio of 88.24%.

In another work, an automatic brain tumor detection and seg-
entation method using ANN to classify the grade of the tumor

roposed in [62] giving an accuracy of 95.30%. To remove the salt
 pepper noise, commonly seen in MR  images, the median filter is
sed. Fast Bounding Box (FBB) method was used for Brain tumor
etection. Here tumor is classified by feeding 10 features for train-

ng ANN. The target matrix is Grade (II–IV), only 3 grades.
The intensity histogram is calculated for each 2D MR  image and

n this histogram signal Slantlet transform is applied for feature
xtraction [63]. The magnitudes of Slantlet transform outputs cor-
espond to six spatial positions which create the feature vector per
mage. The binary classifier based on neural network is trained by
hese features that automatically make inferences if the image is an
lzheimer diseased pathological brain or normal brain. In the train-

ng phase, fast convergence is provided by Levenberg–Marquardt
lgorithm, a fast variant of BPNN. This work envisages that even if
he classifier input is as low as 6 features, it showed considerable
mprovement in accuracy and its accuracy was compared with the

ethods in [18].
Classification of brain MR  images into abnormal or normal was

one using a Scaled Conjugate Gradient (SCG) that calculates the
est weights of the BPNN in [64]. Since the weights are adjusted in
he direction of steepest descent for basic backpropagation algo-
ithm which does not give fast convergence, SCG algorithm is used.

avelet Transforms (WT) representing a windowing method with
ariable size is employed for feature extraction hence, preserving
ignal frequency and time information. The three levels of wavelet
ecomposition greatly reduce the input image size. Even though
he features extracted were decreased to 1024 from 65536, it was
oo large for calculation. Hence to do further dimensionality reduc-
ion of features to 19 principle components, PCA was  used followed
y the BPNN.

PCA for feature extraction and PNN for classifying brain tumor
nto three classes of benign, malignant and normal were utilized in
65]. Further, the malignant tumor is labeled as Meningioma and
lioma.

A hybrid, inexpensive and non-invasive machine learning
ethod to detect brain tumor automatically from MRI  was pro-

osed in [16]. Whenever the image database size has increased this
ork required fresh training. In this technique pre-processing was
one by the median filter and high pass filter, image segmenta-
ion by Feedback Pulse Coupled Neural Network (FPCNN), feature
xtraction by DWT, dimensionality reduction by PCA and classifica-
ion of inputs into abnormal and normal images by the feed forward
PNN.

A method employing CNN for automatic segmentation using 3*3
ernels is proposed in [66]. CNN operates over patches using ker-
els providing benefits of being less prone to over-fitting because
mall kernels have lesser weights compared to big kernels. A deeper
rchitecture is used for High-Grade Glioma (HGG) than that for
ow-Grade Glioma (LGG) because a deeper architecture does not
ive better results for LGG. Going deeper for a smaller training set
f LGG means including more layers with weight but may  result
n increased over-fitting. Around 335,000 and 450,000 patches

ere extracted for training CNN for LGG and HGG respectively.
pproximately four times these numbers were obtained as effec-

ive training samples with data augmentation.
A similar approach in [67] investigates brain tumor grading

mploying multiphase MR  images and the results were compared
ith BPNN and CNN. The kernels were trained in distinct layers and
hey provide some self-learned features attained from CNN. A main
dvantage of CNN is that the kernel learned from the unsupervised
earning process and it functions as the noise suppressor as well as
he feature enhancer of the model. An uneven distribution of train-
rocessing and Control 39 (2018) 139–161

ing class may  cause failure of CNN. For deep learning machine, a
key factor is training sample size.

Another method using deep learning was proposed in [41]. The
reason for using CNN was  the advantage of more global contex-
tual features as well as local features simultaneously. The model
iterated over about 2.2 million examples of tumorous patches and
goes through 3.2 million examples of the healthy patches. The time
needed to segment an entire brain varied between 25 s and 3 min.
As BRATS dataset lacked resolution in 3D, this model processes
sequentially each 2D axial slice, where each pixel is associated with
different image modalities. One disadvantage of the CNN is that
they predict each segmentation label separately from each other.
The advantage is that the two-phase training procedure allows the
model to learn from a more realistic distribution of labels [41].

3.1.5. Self-organizing maps
An automated hybrid Self Organizing Maps with Fuzzy K-Means

(FKM) algorithm, to identify malignant and benign tumor was pro-
posed in [35]. In this method, clustering performs the segmentation
process disintegrating edema portion and tumor region also. Two
staged clustering is done, once by SOM and then by FKM. Advan-
tages of this work were that for performance enrichment of FKM
algorithm the SOM undertakes the initial level clustering. Faster
convergence is provided by the Greedy K-means algorithm in FKM.
Also in the case of HGG, the variable dimensions of tumor region
were exactly identified with this combined algorithm.

Wavelets are input to neural network SOM and SVM for clas-
sification of MR brain images as either normal or abnormal in
[18] giving an accuracy of 94% for the former and 98% for SVM.
Being an unsupervised algorithm, SOM can automatically form sim-
ilarity diagrams and produce abstractions, which is an advantage
over other networks. The level-2, Daubechies-4 (DAUB4) wavelet
decomposition of an MR  image was  the most convenient for the
classifiers. Compared to linear and polynomial kernels, the classi-
fication accuracy is higher in RBF kernel. Though DAUB4 wavelet is
computationally expensive, it provides improved resolution com-
pared to the Haar wavelet.

The commonly used segmentation methods apply a priori
knowledge regarding voxel classification. This inhibits identifica-
tion of new tissue classes that are distinct from the classes with
which the system is trained. Another work [7] proposed two  unsu-
pervised methodologies to overcome this inhibition. From the
whole volume histogram, appropriate information is extracted and
SOM processes this in the first approach while the second approach
includes four stages. In the second approach, using overlapping
windows, the second and first order features are extracted, feature
selection by evolutionary computing and lastly grouping is done by
SOM clustering algorithm. The former approach is quick while the
later method is robust under bad intensity or noisy conditions. The
feature space dimension reduction is done using GA.

A completely different combinational method is proposed in
[68] which segments and labels T1-w images using supervised LVQ
and unsupervised SOM. To improve quality before segmentation, an
anisotropic filter preprocessing is done. The combinations of Sta-
tionary Wavelet Transform (SWT) and its statistical features give
a multidimensional feature vector which is the input for SOM. The
competitive SOM approach is used to segment images and the LVQ
system fine tunes this work.

A segmentation method for neuroanatomical analysis based
on the Growing Hierarchical Self Organizing Map  (GHSOM) with
probability-based clustering scheme and multi-objective-based
feature selection called GHSOM-Multi-Objective Optimization

(GHSOM-MOO) is proposed in [49]. GHSOM is a variant of SOM
allowing inherent hierarchies to be discovered and classifying data
in an unsupervised manner. The drawbacks of basic SOM were over-
come by GHSOM which is a non-fixed and hierarchical structure. An
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verlapping and sliding window is used for feature extraction per
lice; PCA and multi-objective optimization with Non-dominated
orting Genetic Algorithm (NSGA-2) algorithm for feature selec-
ion. The average overlap values of features calculated by NSGA-2
re greater than the ones from PCA, proving NSGA-2 optimiza-
ion process to be performing superior to PCA, in dimensionality
eduction.

.1.6. Particle swarm optimization
Reference [69] compared three automated diagnosis systems to

etect glioma and classify them into healthy and unhealthy brain
mages. Four steps are involved per glioma diagnosis system. Firstly,
he segmentation of image with PSO, Darwinian Particle Swarm
ptimization (DPSO), or Fractional Order DPSO (FODPSO) to obtain

mage geometric silhouette. Secondly, the Directional Spectral Dis-
ribution (DSD) signature of the segmented image is computed.
hirdly, feature extraction of the DSD by means of Multi-Scale
nalysis (MSA) using Generalized Hurst Exponents (GHE). Lastly,
lassification of the obtained multifractal features using SVM. This
ethod has the advantage that it is simple to implement, requires

nly six multi-fractal estimates used to form the vector of features
nd takes only four seconds for processing a given brain MRI. The
ODPSO-DSD-MSA glioma diagnosis system performed the best.
he overall processing time is less than 5 s.

The science of MRI  and MRS-based on multi-dimensional co-
ccurrence matrices is combined in [70]. It illustrates edema and
umor segmentation as well as grading of HGG and LGG. The feature
rom MRI  and MRS  are used to train Extreme Learning Machine-
mproved Particle Swarm Optimization (ELM-IPSO) neural network
lassifier. The tissue classes and tumor grades are distinguished
sing volumetric features and spectroscopic metabolite ratios.
pectroscopic and/or textural features were used to design the
LM-IPSO classification system. Another work [70] clearly high-
ights that the classification by combining multimodal proton MRS
nd morphological MR  images of the brain is still a challenging task.
his is because both anatomy and pathological diagnosis require
ntensive manual interaction for segmentation and classification.

An MR  brain image is classified into normal and abnormal using
n FFNN in [71] using a level-3 decomposition via Haar wavelet
ransform to extract features from images, followed by applica-
ion of PCA. The dimensionally reduced features are given to FFNN,
nd optimization is done by Adaptive Chaotic Particle Swarm Opti-
ization (ACPSO). FFNN is a supervised classifier which is trained

n this work using PSO. Computationally less expensive PSO needs
ery few lines of implementation codes and less computational
ookkeeping. To obtain FFNN’s optimal parameters and for perfor-
ance improvement of PSO, an ACPSO method was  used in [71].
ut of the three types of cross-validation methods (K-fold cross-
alidation, leave-one-out validation and random subsampling), the
-fold cross validation with K = 5 was used.

.1.7. Random forest
Characterization and delineation of four distinct brain tumor

ypes from slices of a T1c sequence of MRI  were proposed in [17]
sing an ensemble learning scheme, RF. A Correlation-based Fea-
ure set Selection strategy (CFS) generates reduced set of features
n which the same experiment was repeated. Fast computation,
arge dataset dealing capability and evaluation of potential features

ere the advantages of RF. The CFS reduced the feature dimen-
ion from 86 to 15. The out-of-bag classification error was 0.044
hile 0.0278 after dimensionality reduction. Using the entire fea-
ure space, RF gave improved results compared to the application
f feature selection strategy. The advantages of this methodology
ere that it required no preprocessing, neither registration nor de-
oising and also from a single sequence MRI  diagnosis was possible.
ocessing and Control 39 (2018) 139–161 149

A supervised segmentation framework based on RF derived
probabilities using multiple modality intensity, geometry, and
asymmetric feature sets are portrayed in [2]. The ANTsR pack-
age is used to interface RF model’s supervised learning capabilities
with regularized probabilistic segmentation. This package is a
comprehensive visualization and statistical interface among the
R statistical project and Advanced Normalization Tools (ANTs).
Voxel-wise classification with Gaussian Mixture Modelling (GMM)
was done. It was applied to model 7 brain/tumor tissue types.

For multispectral and single MR image segmentation in real
time, a different method on the basis of Markov Random Field (MRF)
and a hybrid social algorithm consisting of a gossiping algorithm
and an Ant Colony Optimization (ACO) is proposed in [72]. Ants
find the optimum path between a food source and their nest. This
forging behavior of ants is used for heuristic optimization which is a
multi-agent guided scheme, called the ACO. In every iteration, the
suitable result of each ant is spread rapidly among its neighbors.
In the next iteration because of this positive feedback, a purpo-
sive path that is closer to the optimal solution can be found. The
convergence process speeds up due to this smart behavior. Hence
the combination of the gossiping algorithm with ACO aids to find
an improved path using neighborhood. Several experiments using
this design were performed on phantom and real images.

3.1.8. Miscellaneous methods
A CAD system that detects and classifies the MRI  brain tumor

images as benign and malignant is presented in [73]. In this, the
image sharpening is done on T1-w while anisotropic diffusion fil-
tering is done on the T2-w image. The reason for using an unsharp
mask for obtaining a sharp image is that the clarity of the T1-w is
explained by its sharpness. Similarly, the anisotropic diffusion filter
decreases the loss of information by efficiently preserving detailed
structures and object boundaries. The alpha blending technique is
used for compositing both axial T1-w and T2-w images. The seg-
mentation of tumor area is done using the Enhanced Watershed
Segmentation (EWATS) algorithm. GLCM techniques are used for
texture feature extraction from the segmented image. For efficient
cataloging Regularized Logistic Regression (RLR) is used.

At the same time in [74], GLCM proved to be the best among
the different feature extraction methods based on intensity. The
WEKA tool classification algorithm J48 (decision tree algorithm)
showed similarity with GLCM features. Similarly [75] explains a
tumor extraction method for early and rapid detection of a brain
tumor. The tumor area extraction and classification is done with
the decision tree classifier which is a non-parametric, rule-based
classifier requiring no presumption about variable distribution in
each class. Also having the benefits of being simple structured.

Volumetric 3D segmentation, reconstruction, and visualization
of brain tumor using axial, sagittal and coronal planes of multi-
modal brain MRI  are explained in [76]. Images were skull stripped
and interpolated to an isotropic resolution of 1 mm for every voxel.
The intensity difference feature extraction is used. Morphological
operations are performed on tumor mask obtained so far in order
to refine the content and margin of tumor regions. Initially, the
erosion operator is used to remove any residual region around the
tumor followed by dilation for filling the holes within the tumor
mass.

Glioma classification can be facilitated by perfusion metric as it
can’t be achieved by conventional MRI  alone [51]. This work aims
to find the potential of relative Cerebral Blood Flow (rCBF), rCBV
and relative Percentage Signal intensity Recovery (rPSR) values of
T2* DSC perfusion MRI, in discriminating HGG and LGG. It was con-

cluded that rPSR inversely correlates while rCBV and rCBF values
directly correlate with the tumor grade. DSC perfusion MRI  is a
widely used for evaluating the hemodynamic characteristics (rCBV
and rCBF) of the brain, as it helps in assessing the malignancy of
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he tumor. But rPSR is the only parameter among the different per-
usion metrics which takes into account the leakage factor for the
haracterization of heterogeneity of brain tissues. It’s clear in [51]
hat radiologist trust semi-automatic method. The limitation of this
ork was the manual placement of the ROI for the assessment of
ifferent parameters.

A fusion-based technique for segmentation based on a blend
f deformable model and spatial relations is proposed in [77].
hree popular deformable methods: snake, level set and distance
egularized level set evolution were used for predicting their
erformance in generating the brain tumor boundaries. Gener-
lly, deformable methods require user-initialization. But the initial
urve is automatically generated by this proposed method. The
ork consisted of three stages: initial curve placement is made

y Extended Maxima transform, final curve segment is converged
sing boundary-based deformable models, performance is com-
ared using final curve region with each other.

To characterize the changes in MR  signal at the tumor boundary,
 boundary analysis method i.e. distinct from basic edge detection
as proposed in [78]. The tumor margin status was significantly

orrelated with boundary distance and slope of T2 signal changes
t the normal/tumor tissue boundary. Based on a sampling of the
RI  intensity from 90 constructed sampling rays that stem from a

oint marked by a radiologist, near the midpoint of the tumor, the
umor boundary attributes were measured.

An automatic method using linear vector quantization for brain
umor classification into benign or malignant accompanied with a
ombination of texture and shape features is proposed in [79]. The
eature vector is composed of Fourier Descriptor coefficients (FD)
nd 7-moment invariants which give shape representation, along
ith 13 Haralicks texture features. These are input for classifica-

ion to linear vector quantization which is a supervised variant of
ohonen learning rule.

A data-driven analysis of multi-parametric MR  imaging, taking
nto account the MR imaging heterogeneity of the lesions sig-
ificantly improves discrimination between low- and high-grade
rain gliomas were explained in [80]. It was concluded that this
ethod significantly improved sensitivity and specificity. Basic MRI

ives relevant information concerned with the presence of edema,
ontrast enhancement, multicentricity and/or multifocality, hem-
rrhage, necrosis, and mass effect, which are all markers of glioma
ggressiveness. But because of overlap of MRI  features found in
GG and HGG, classification using basic MRI  is often uncertain, with
ensitivity varying from 55% to 83%.

A computer aided method using Open CV (Open source Com-
uter Vision library) and embedded system for detection of brain
umor tissue was used in [81]. The comparison between open CV
nd existing methods showed that accuracy was highest and the
xecution time was the least for this method. Open CV is an open
ource computer vision and machine learning software library.

.2. Semi-automatic 2D & 3D user interaction methodologies

.2.1. FCM
A  Unified Model based classification with FCM (UMCF) using

xtended Hyperbolic Tangent (EHT) model (derived from logistic
egression), Gaussian mixture model and fuzzy soft clustering tech-
ique is used in [82]. EHT quantifies the relationship between two
ariables. Soft clustering minimizes dissimilarities among objects
f same cluster and similarity among different classes. Normal cells,
dema and tumor were represented by using pixel value 0,100 and
55 respectively. The advantage of this work was that using EHT

odel reduces false positive and false negative.
For the classification of astrocytomas as WHO, high/low grade,

83] portrays the use of Fuzzy Cognitive Maps (FCMs). It models
nd represents the knowledge of experts like their expertise, expe-
rocessing and Control 39 (2018) 139–161

rience, heuristic etc. The powerful properties of neural networks
and fuzzy logic are blended into FCMs. It’s grading ability and appli-
cability was strengthened by the Activation Hebbian Algorithm
(AHL). The most useful experience and knowledge of experts were
extracted by AHL algorithm. FCMs benefits were the ample trans-
parency and interpretability in the decision process and drawback
was the convergence to undesired regions which was avoided by
the use of suitable learning algorithms. Hence when new strategies
were adopted, the learning algorithms recalculated the weights.
To assess the tumor grade, experts usually utilize 8 histopatho-
logical features: cellularity, mitoses, apoptosis, the giant cells, the
multinucleated cells, the necrosis, the vascular proliferation and
the pleomorphism. These key characteristics encoded the degree
of malignancy of the tumor. The experts could qualitatively explain
the degree of causality among concepts and need not explain the
causality relations by numerical values.

3.2.2. SVM
For the purpose of glioma grading and for distinguishing

between metastases and gliomas, a computer-assisted classifica-
tion scheme fusing the basic MRI  and rCBV maps, calculated from
perfusion MRI  is developed in [84]. SVM-RFE performed the feature
subset selection. Two  expert neuroradiologists manually traced 4
ROIs, from which the features were extracted. Results show that
grading differentiation is possible by incorporating rCBV maps. A
drawback was  the necessity to trace ROIs making it a semiauto-
matic approach and causing inter- and intra- observer variability.

A multiclass classification system is used in [42] to determine
tumor grade and type. Along with RBF kernel, the Least Squares
Support Vector Machines (LS-SVM) were used and correlated with
LDA. A data set consisting of 10 classes of pathologies of Mag-
netic Resonance Spectroscopic Imaging (MRSI) and MRI  data are
obtained from the INTERPRET project database. MRSI preprocessing
steps were a correction for eddy current effects, frequency align-
ment, filtering of k-space data by a hanning filter and baseline
correction using an exponential filter, followed by subtraction of
the residual of the original signal. Entire data is preprocessed semi-
automatically and images are co-aligned. Registration of image is
done with respect to the PD-weighted image by shifting and max-
imizing the spatial correlation. Further, the results were improved
by Automatic Relevance Determination (ARD) for feature selection.

Prediction of the degree of glioma malignancy and selection
of appropriate features was  done using SVM with floating search
method in [85]. For this purpose, the feature subset evaluation was
done by the SVM-based wrapper method and for the feature subset
generation, the Backward Floating Search (BFS) method was used.
BFS is based on SFS which adds the most relevant features one by
one and SBS which removes the least relevant feature one by one.
This work clearly shows that the feature subsets of distinct data
sets provide classification accuracy and not the individual features.

A hybrid system for brain tumor classification using GA and SVM
with Gaussian RBF kernel is recommended in [44]. The selection of
the most relevant features was done by GA optimization and the
experimental output showed that GA improved SVM’s classification
accuracy from 56.3 to 91.7%. Each feature component was normal-
ized independently to a specified range by linear scaling in the
limits of [0,1]. This ensures that the greater value input character-
istics do not overwhelm the smaller value inputs hence decreasing
prediction error.

For the definition of regions, multidimensional or multispectral
segmentation uses information from more than one original image
of the same site. [21] proposes a method to inspect the tumor state

by measuring its volume change over time, of the same patient. It
learns the brain tumor and selects the features, further by using
SVM the tumor in new data is segmented automatically. Also, the
tumor contour is refined by a region growing technique. Feature
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election is done by optimization of kernel class separability. The
daptive training automatically tracks the tumors due to variations
f tumor characteristics over time or acquisition condition.

.2.3. ANN
A methodology starting with a mouse click on an image identi-

ying and circumscribing the tumor using semi or fully automatic
AD system and finally being acknowledged as a pathological tissue
y the physician was proposed in [86]. This system did identifica-
ion of tumor and quantitative measurements. The AIR (Automatic
mage Registration) software was used to align the Diffusion Ten-
or Imaging (DTI) datasets offline and hence correcting artifacts.
n each map, the glioma ROI was drawn manually followed by
pplying texture analysis on the segmented ROIs. Using a sliding
indow approach, features were calculated from the gradient his-

ogram and intensity, from GRLM and GLCM. The Fisher-filter score
as used to identify the discriminating features per map  and per
atient. And then PCA was used to cut down redundancy of infor-
ation. A BPFFNN was used for the supervised classification.
The benign and malignant astrocytic gliomas were differenti-

ted using a three-layer, FFNN with a back propagation algorithm
n [87]. MR  images were reviewed and graded independently by
hree neuroradiologists without knowledge about the patholog-
cal results. The MR  parameter readings of each observer were
iven into the NN to map  them to the equivalent pathological out-
uts. The performance was better when relative Receiver Operating
haracteristic curve (ROC) areas were 0.94 with and 0.91 without
adiologists’ impression, compared to 0.84 by a radiologist. It took
00 iterations and 562 learning processes to perfectly train the net-
ork. The strongest indicator of malignancy among the evaluated

eatures was the presence of ring enhancement having a maximum
orrelation with pathological findings. The other indicators were
umor heterogeneity, the degree of contrast enhancement and the
xtent of edema.

To assist radiologists in the multiclass classification of brain
umor, an interactive CAD system was proposed in [33]. Content
ased Active Contour (CBAC) model was used to mark the tumor
egions which were saved as segmented ROIs. From these seg-
ented ROIs 71, texture and intensity feature set were extracted. A

ombination of classifiers was used namely ANN using MLP  learn-
ng algorithm and GA with SVM using Gaussian RBF kernel. The
reliminary probability in tumor class identification was provided
y GA-SVM, also benefits in accuracy and speed. The joined output
rom dual classifiers aided the radiologists in improved diagnosis.

In medical images segmentation of homogeneous tumors was
one using active contour models based on intensity like Magneto-
tatic Active Contour (MAC), Gradient Vector Flow (GVF) and Fluid
ector Flow (FVF), but the analysis in [88] shows that many of

hese schemes decline to segment homogeneous tumors against
he identical background. So CBAC was proposed which use both
exture and intensity information present inside the active con-
our. In this method, from 2D slices, tumor volume is extracted
nd is called as 2.5D segmentation. The contour is guided itera-
ively towards the boundary of the tumor by Static Motion Field
SMF) and Dynamic Motion Field (DMF).The dynamic field aims to
eform the contour to cover the tumor while the static field makes
he contour reach the boundary of the tumor. To guide the contour
oward the tumor boundary SMF  uses gradient force if the contour
ies outside the tumor boundary. Finally using static and dynamic
elds, CBAC makes the active contour to segment the tumor.

A user interactive model for primary and secondary brain tumor

xtraction which is a boundary based technique called GVF is
sed in [39]. PCA-ANN approach classifies these segmented ROIs.
radient Descent Back-Propagation with Momentum (GDBPM)
lgorithm is used for judging weights in the training phase. These
ocessing and Control 39 (2018) 139–161 151

tumors are manually segmented and graded by an expert for vali-
dation.

A multiclass brain tumor classification using PCA-ANN approach
is done with a diversified dataset in [30]. Being a semiautomatic
scheme, the radiologist marked the ROIs initially. 856 ROIs were
segmented using CBAC model. The initial contour is used by CBAC
to find texture and intensity values outside and inside ROI. Three
sets of experiments were performed. Firstly, classification accuracy
was checked using ANN approaches. Secondly, the segmented ROIs
of the same patient were repeated during testing and PCA-ANN
approach with random sub-sampling was  used. The classification
accuracy increased from 77 to 91%. Thirdly the segmented ROIs of
the same patients were not common for testing and training sets.
This was done to check the proposed systems robustness and for
bias removal hence resulting in 85.23% overall accuracy.

Brain tumor discrimination is done fusing a non-linear Least
Squares Features Transformation (LSFT) with PNN classifier in [48].
By conditioning the textural features using LSFT, the performance
of PNN classifier was  boosted significantly at the same time result-
ing in dimensionality reduction and increased class separability.
At the initial level of the decision tree, metastatic and primary
brain tumors are distinguished and in next level meningioma and
glioma, resulting in a two-level hierarchical decision tree. Two
distinct LSFT-PNN classifiers were used for classification at each
level of the decision tree. A cubic and a quadratic LSFT-PNN was
employed at the first level and at the second level of the decision
tree respectively. The non-parametric Wilcoxon rank sum test was
used for feature dimensionality reduction. Two  cross-validations
were done, the Leave-One-Out method (LOO) and the External
Cross-Validation (ECV) method.

3.2.4. Miscellaneous methods
In [89] how to differentiate the factors that separate or define

a grade of the tumor by use of MRI  is showcased. 36 pathologi-
cally verified gliomas were analyzed and compared with biopsy
diagnosis to find out if MRI  could be used to classify astrocytic
tumors to low-grade astrocytoma, anaplastic astrocytoma, and
glioblastoma multiforme. The MR  features evaluated were border
definition, mass effect, edema, tumor signal heterogeneity, hemor-
rhage, necrosis or cyst formation and crossing of the middle line.

Based on minimum user interaction, a semi-automatic method
using kNN segments by training and generalizing within brain only
is proposed in [23]. A merit to be noted in this method is that
without human interruption any new brain can be processed, once
training is done. On the other side, a drawback is that data might
have been collected from distinct MRI  scanners for training on mul-
tiple brain subjects. This gave rise to a problem with the MR  image
intensities as it is not consistent over various MRI  scanners. This
work reveals that CRF is a substitute to MRF  and kNN-CRF gave
improved performance than kNN and kNN-MRF. The processing
using kNN-CRF and kNN-MRF techniques took within one and two
minutes per brain.

K-means algorithm is used for segmentation initially in [90]
but it fails to handle noise on the data and outliers. Hence water-
shed segmentation was  used to separate the tumor cells from the
healthy cells. The watershed method has a drawback that it is highly
sensitive to local minima.

In [26] initially, the radiologist visually identifies the salient
region which was used to segment the brain lesion accurately.
Automatically applying salient information as labeling constraints
quickened the N-Cut segmentation. Segmentation by saliency
weighted N-Cut segmentation demonstrates a brain MRI  analysis

technique that would determine the scientific value of images with
no training requirement. The McStrip method was  used to remove
non-brain parts. Features like multi-scale contrast, motion per-
ception and curvature feature were used. The Graph-based Visual
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aliency (GVBS) and Saliency for Image Manipulation (SIM) were
he software used (for comparison Matlab implementation was  also
sed).

The consolidated details of the reviewed works are tabularized
n Tables 1 and 2. Table 1 consolidates the method of user inter-
ction, preprocessing, feature extraction, the number of features,
eature types, dimensionality reduction methods, segmentation

ethodologies, classifiers opted and their outputs, classes/tumor
ypes and performance evaluation. Table 2 summarizes the modal-
ties, dataset and sources of the database used. The works having
o techniques used under a heading have been marked as NA-Not
pplied/NM- Not Mentioned.

. Discussion

Most of the reviewed works focused on automatic methods.
astly used preprocessing methods involved median filtering,
4ITK for bias correction, skull stripping using BET, Image sharp-
ning, registration and anisotropic diffusion filtering, scoring the
aximum usage. Most of the algorithms especially the conven-

ional FCM algorithm is sensitive to noise in the MR  image, so the
ocus must be on reducing the negative effect from Rician noise,
hich is the common type of noise in MR  images [3].

This survey reveals that segmentation was done mainly using
NN, FCM, SOM, CBAC and MRF. Brain MRI  segmentation methods
an be classified into 6 major categories- Threshold Based Seg-
entation (eg: Otsu method and Th-mean method), Region Based

egmentation (eg: Region splitting, merging and growing), Edge
etection, Clustering (hard and soft clustering, algorithms used
CM and K-means), Statistical Models(EM algorithm, MRF  model)
nd ANN [11]. It is stated in [91] also that the most commonly
sed techniques for tumor analysis were based on FCM, region
rowing, fuzzy sets and hybrid. Due to the rise in varying spec-
fications and new applications, selecting the most appropriate
echnique confined to a particular application is difficult. In such
ases, a combination of different techniques can be done to fulfill
he desired segmentation goal. Hence, in current scenario hybrid
r combination of segmentation methods are used so as to avoid
he disadvantages of each method alone, which will improve the
egmentation accuracy.

Hybrid techniques that combine two or more techniques and
oft computing techniques like NN, fuzzy logic and GA have found
ide applications in image segmentation. Reference [11] gives a

eview on the various hybrid segmentation methods revealing that
-means has better performance and less computational complex-

ty. Hence by applying K-means in conjunction with other methods,
t is possible to increase the segmentation performance.

Summarizing the feature extraction techniques surveyed, the
ost commonly used method was DWT  and GLCM. PCA and GA

cored the highest usage for dimensionality reduction. The misclas-
ifications can be diminished by concentrating on high dimensional
eatures including pathological and radiological tumor details [33].

The classification was mostly performed using PNN, RF, SVM,
NN, MRF, ANN, SOM and fuzzy methodologies, while classifica-
ion with hybrid systems gave the best accuracy. Classifiers such as
VM and, lately RF were favorably used for brain tumor segmen-
ation [66]. The natural capability of RF in handling large feature
ectors and multi-class problems made it popular. The MICCAI-
RATS Challenge reveals that methods relying on RF are among the
ost accurate [4]. Research shows a good performance on CNN-

ased algorithms especially in the field of 2D data classification.

he merit of CNN is that each kernel in different layers is learned
pontaneously, so that there is no need of feature setting before-
and because of which, the number of training example becomes
ritical [67]. Ta
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[34] 2D-SA NA 71 intensity and texture feature
set + GA

CBAC + SVM & ANN dataset 1-Astrocytoma,
Glioblastoma Multiforme,
Medulloblastoma, Meningioma
and Metastatic, dataset 2-
Astrocytoma, Low Grade Glioma
and Meningioma

accuracy- (first dataset:
GA-SVM-91.7 and GA-ANN 94.9,
second dataset: GA-SVM 89 and
GA-ANN 94.1), training time- 1 h &
2  h, testing time- 0.70 & 0.60 ms

[35] 2D-SA NA NA EHT + UMCF normal, edema, tumor HG-(accuracy- 100, precison-0.95,
recal- 0.98); LG-(accuracy- 100,
precision- 0.98, recal- 0.92)

[36] 2D-A Images under each moment are
very robust to noise.

moment invariant + binary AR NN & AR-NN normal, benign, malignant accuracy- (NN-73.3, AR-NN-83.72),
precision- (NN- for normal: 0.9245;
for benign: 0; for malignant:
0.7938. AR-NN- for normal:
0.8302; for benign: 0.5455; for
malignant: 0.9027), OF- (NN- for
normal: 0.6049; for benign: NaN;
for malignant: 0.8462. AR-NN- for
normal: 0.7586; for benign:
0.7059; for malignant: 0.9027),
specificity- (NN- for normal:
0.9560; for benign: 0.8721; for
malignant: 0.7531. AR-NN- for
normal: 0.9211; for benign:
0.9355; for malignant: 0.8800)

[37] 2D & 3D-A skull stripping using BET and ROI
based brain masking

Interpolation of mean and variance SOM based FKM clustering malignant and benign, tumor and
edema

accuracy- 96.18, MSE- 2.151, PSNR-
41.85 dB, dice- 47.36, SI- 0.9189, JI-
31.54, EF- 0.0256, OF-  0.8718,
specificity- 0.9737, speed- 2.8s

[38] 2D-A NA DSD-MSA PSO, DPSO, or FODPSO + SVM healthy and unhealthy brain MRIs accuracy- 99.18, UQI- 0.4536, OF-
100, specificity- 97.95, speed- 4.57s

[39] 2D-A Image sharpening & anisotropic
diffusion filtering

GLCM EWATS + RLR benign and malignant accuracy- 96, NAE- 0.08468, PSNR-
24.85, SS- 0.978, NCC 0.94924,
OF- 97, specificity- 86

[40] 3D-A bias field removal, equalization,
skull stripping and interpolation to
isotropic resolution.

Intensity Difference Feature
Extraction

3D volumetric, intensity based
segmentation

NA Dice- 0.76, OF- 84.645, specificity-
98.232

[41] 2D-A NA Statistical features and Gabor
wavelet features + PCA (475 to 20
features)

sliding window + SVM, KNN, SRC,
NSC, k-means clustering

tumor and healthy tissue accuracy- 97.4, OF-  96.2,
specificity- 95.7, speed- (Tumor
slice detection: 12 min, Gabor
wavelet feature extraction: 17 min,
Statistical feature extraction:
18 min, PCA on Gabor wavelet
feature: 59 min, PCA on statistical
feature: 11 min)

[42] 2D-A anisotropic diffusion filter intensity, LBP, GLCM, and wavelet
characteristics, Law’s energy
texture features and also Features
extracted from biopsy

canny edge detection
method + ANFIS

healthy and abnormal (benign or
malignant)

SI-0.817, OF-0.82, EF- 0.182, PPV-
0.817

[43] 2D-A registeration, Otsu thresholding NA FCM, KFCM tumour, non-tumour OF- 64.84, specificity- 99.89, Dice-
71.83

[44] 2D-A de-noising by median filter and
Skull removal by BSE

NA thresholding and level set + KIFCM NA accuracy- (dataset 1- 90.5, dataset
2- 100, dataest 3- 100), precision-
(100 for all datasets), recall-
(dataset 1- 90.5, dataset 2- 100,
dataest 3- 100), speed- (dataset 1-
12.87s, dataset 2- 5.18s, dataset 3-
3.46s)
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Table 1 (Continued)

Paper User interaction preprocessing Feature extraction Segmentation + Classification classes/tumor type Performance evaluation

[45] SA AIR software sliding-window approach + PCA FFBPNN tumor voxels were classified into 3
classes

AUC- (p map- 0.96, FA map- 0.98),
OF- (p map- 90, FA map- 92.6),
specificity- (p map- 90, FA map-
92.6), classification error- (p map-
10.0, FA map- 7.3)

[46] 2D-SA BET, FLIRT from FSL t-test with bagging, constrained
LDA, SVM-RFE (161 to 50 features)

LDA with Fisher’s discriminant
rule, k-NN, nonlinear SVMs

meningioma, glioma of grades II,
III,  IV and metastasis

accuracy- 91.2, AUC- 93.6

[47] 2D-A Image resizing, RGB to grayscale
conversion

Wavelet Features, GLCM Features,
Law’s Energy Texture Features

ANFIS benign and malignant Accuracy-99.4, SI- 0.78, PPV- 99.06,
NPV- 99.41, Specificity- 99.98, OF-
72.39, EF- 0.0098, speed- 0.441s

[49] 2D & 3D-A median filtering, unsharp masking,
histogram equalization, FLIRT

feature ranking using information
gain, feature selection using ICA,
PCA, GA, 2D & 3D feature
extraction using Haar wavelet
(432-dimensional feature vector)

DWT, MFCM + SVM, ANN, kNN benign and malignant accuracy- 99.09, VO- 89.35, HD-
3.62, SMD- 0.54 mm,  OF- 100,
specificity- 98.21, speed- (with
reduced feature set- 4–5 s, with
complete feature vector- 12 s)

[50] 2D-A T2FIE CFC Interval Type-2 fuzzy set theory
and relative entropy + Interval
Type-2 approximate reasoning
method

Astrocytomas grade I-IV Accuracy- 89, precision- 99, OF- 89,
specificity- 90

[52] 2D & 3D-A NA The 6 volumetric features from
multidimensional co occurrence
matrix and 3 spectroscopic
features from metabolite ratios

ELM-IPSO neural network classifier pathological tissues (tumor and
edema), normal tissues (WM  and
GM), fluid-CSF, HGG and LGG

accuracy- 99.15, MSE- 0.015, AUC-
0.97, OF- 98.01, specificity- 95

[55] 3D-SA co-registration, filtering of k-space
data by a Hanning filter, correction
for eddy current effects, frequency
alignment and a simple baseline
correction using an exponential
filter, subtraction of the residual of
the original signal.

feature selection- Fisher
discriminant criterion,
Kruskal-Wallis test, Relief-F and
ARD for Bayesian LS-SVM (10
features/spectrum)

LS-SVM-RBF, LDA 1- normal tissue, accuracy- 98.24, Brier score-
2.9179 exp −3

2-  CSF,
3- grade II diffuse astrocytomas,
4- grade II oligoastrocytomas,
5- grade II oligodendrogliomas,
6- grade III astrocytomas,
7- grade III oligoastrocytomas,
8- grade III oligodendrogliomas,
9- meningiomas,
10- grade IV gliomas.

[56] 2D-A RGB to gray conversion, resizing PCA PNN dataset 1- Normal, Benign and
Malignant, dataset 2- Glioma and
Meningioma

accuarcy- (dataset 1- for SV = 10e6
is  65.71 and for SV = 10e7 is 97.14,
dataset 2- for SV = 10e5 is 90 and
for SV = 10e6 is 100), OF- (dataset
1- for SV = 10e6 is 76.92 and for
SV = 10e7 is 92.30, dataset 2- for
SV  = 10e5 is 85.7 and for SV = 10e6
is 100), specificity- (dataset 1- for
SV  = 10e6 is 59 and for SV = 10e7 is
100, dataset 2- for SV = 10e5 is 100
and for SV = 10e6 is 100)

[57] 2D-SA NA manually 13 features FFBPNN malignant and benign astrocytic
gliomas

AUC- 0.9408, accuracy- 92, SSE-
0.02, speed- (562 learning
processes, 100 iterations in each
learning process within 2 h)
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[58] SA NA manually by histopahologists fuzzy cognitive maps LG & HG astrocytomas accuracy- (LG- 90.26, HG- 93.22),
OF- 93.22, specificity- 92.68

[59] 2D-A denoising by Nl means filter, Brain
extraction using EM algorithm
followed by dilatation.

NA decision tree classifier tumor and non tumor accuracy- 0.912, DSC- 0.913, JSC-
0.9, precision- 0.936, OF- 0.899,
specificity- 0.975, speed- 1 min

[60] 2D-A artefact removal and noise
reduction

histogram based features,and
texture based features using GLCM
(13 features)

ANFIS 5 types- Glioma, Meningioma,
Metastatic adenocarcinoma,
Metastatic bronchogenic
carcinoma, and Sarcoma

accuracy- 98.25, error rate- 0.05,
Kappa Index- 0.9, Jacard index-
0.89

[62] 2D-SA NA LoG, GLCM, RILBP, DGTF, IBF, RICGF
(218 intensity and texture
features) + PCA

CBAC + PCA-ANN 6 classes- astrocytoma,
glioblastomamultiforme,
childhood
tumor-medulloblastoma,
meningioma, secondary
tumor-metastatic, normal regions

accuracy- 91, speed- training time-
25 min, testing time- 0.55 ms

[63] 3D-A dwFCM reduces the negative
effects of rician noise

LaV deformation features, intensity
features

dwFCM + ANN, SVM background, WM,  GM, CSF, tumor,
edema

Accuracy- (SVM: 98.9, ANN:98.8),
Miss rate- (SVM:10.0, ANN:11.7)

[65] 2D-A For noise removing and
anti-blurring a Gaussian Filter is
used

histogram, GLCM, J48 and intensity J48 (decision tree algorithm)
classifier

Tumor (Metastatic bronchogenic
carcinoma, Astrocytoma,
Meningioma, sarcoma) and normal
class

accuracy- (for intensity histogram-
89, GLCM-95.25, J48- 97.5,
intensity- 93), MCC- (for intensity
histogram- 0.84, GLCM- 0.96, J48-
0.98, intensity- 0.92)

[66] 2D-A BEA NA ExM transform (Extended
Maxima), Parametric Deformable
model (snakes), Geometric
deformable model (Level set
Function), DRLSM

CSF, WM,  GM and background Jaccard, William’s index-
calculated individually

[67] 2D-A bias field correction by N4ITK
method, intensity normalization

To train the CNNs for HGG and
LGG, 450,000 and 335,000 patches,
respectively were extracted

CNN normal tissue, necrosis, edema,
non-enhancing, enhancing tumor

Dice- (BRATS 2013 dataset- for the
complete, core, and enhancing
regions are 0.88, 0.83, 0.77,BRATS
2015 dataset- 0.78, 0.65, 0.75),
speed- 8 min

[70] 2D-SA NA 36 textural features- 4 features
from the ROI’s histogram, 22 from
the Co-occurrence Matrices and 10
from the run-length
matrices + non-parametric
Wilcoxon rank sum test (36 to 10
features)

LSFT-PNN classifier (first level-
cubic, second level- quadratic)

metastatic and primary brain
tumors (gliomas and
meningiomas)

accuracy- (first level cubic
LSFT-PNN classifier- 94.03, second
level quadratic LSFT-PNN
classifier- 99.33), OF- 93.48,
specificity- 95.24, speed- 40 min

[72] 2D & 3D-A NA Optimal Symmetric Multivariate
Templates, Asymmetry and
Symmetric Template
Normalization features, Voxelwise
Image Features for RF
Segmentation, Intensity Modeling
and Regional Geometry features

RF + MRF  CSF, GM,  WM,  edema,
non-enhancing tumor, enhancing
tumor, and abnormal necrotic
center or necrocyst in HGG

Dice- (challenge dataset:
complete- 0.87, core- 0.78,
enhanced- 0.74), positive
predictive value- (challenge
dataset: complete- 0.85, core- 0.74,
enhanced- 0.69), OF- (challenge
dataset: complete- 0.89, core- 0.88,
enhanced- 0.83), speed- 2hours

[73] 2D-SA normalize the data to the quadrant
of [−1, 1]

Wrapper on SVMs + BFS gave 15
features reduced to 6 features

SVMs, ANNs, FMMNN-FRE LG, HG Accuracy- (87.14 for dataset1 and
88.33 for dataset2 by SVMs vs.
83.21 for dataset1 and 86.37 for
dataset2 by FMMNN-FRE)

[75] 2D-A enhancement filter 13 Haralick texture feature FFBPNN, RNN, Elman network Oligodendroglioma, Meningioma
and Glioblastoma

BP NN and RNN- performance ratio
was 76.47, for Elman 88.24
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Table 1 (Continued)

Paper User interaction preprocessing Feature extraction Segmentation + Classification classes/tumor type Performance evaluation

[76] 3D-SA registeration and alignment Manually 6 simple features kNN, kNN-MRF, kNN-CRF edema, non-enhancing tumor,
enhancing tumor and healthy
tissue

Dice- (kNN-CRF: complete- 0.85
core- 0.75 enhancing- 0.63),
precision- (kNN-CRF: complete-
0.92 core-0.84 enhancing- 0.77),
recall- (kNN-CRF: complete- 0.80
core- 0.73 enhancing-0.56), speed-
1 min

[79] 2D-A Median Filter, Pulse-coupled
neural network

GLCM, PCA and statistical methods
(Shape based feature- 4

FCM & Watershed
segmentation + SVM, LVQ, Naive
Bayes

LG,  HG astrocytoma accuracy- (SVM- 88.88, LVQ- 91.67,
Naive Bayes- 91), error- (SVM-
11.12, LVQ- 8.33, Naive Bayes- 9),
speed- (SVM- 0.5286s, LVQ-
0.1572s, Naive Bayes- 0.0342s)

Intensity based features- 5
Texture based features- 6) + SFLA

[81] 2D-A Median filter 10 features- 8 GLCM features & 2
features are patients’ identity
based.

FBB + FFBPNN Grade II-IV accuracy- (Grade I- 93.93, Grade II-
97.77, Grade III- 94.22)

[82] 2D-A ROIs obtained using FCM clustering
technique, rCBV maps were
created from the DSC MR  data
using standard kinetic models,
normalization

rCBV histogram parameters with
patient age gives 101
features + PCC, PCA, ICA

FCM + SVM LGG  & HGG accuracy- (PCA- 85, PCC- 82, ICA-
79), OF-  (PCA- 89, PCC- 89, ICA-
87), specificity- (PCA- 84, PCC- 77,
ICA- 75), speed- (PCA- 0.076s, PCC-
0.067s, ICA- 0.094s)

[83] 2D-SA NA GLCM, LoG, DGTF, RICGF, RILBP,
Intensity based features- 218
texture and intensity features + PCA

GVF + ANN (Gradient Descent
Back-Propagation algorithm)

6 classes- primary
tumor-Astrocytoma, Glioblastoma
Multiforme, child
tumor-Medulloblastoma,
Meningioma, secondary
tumor-Metastatic along with
normal regions

accuracy- 95.37

[84] 2D-SA NA GLCM, LoG, DGTF, RICGF, RILBP,
Intensity based features, Shape
based Feature- 71 features + GA

SVM-GRBF five classes- Primary tumors-
Astrocytoma, Glioblastoma
Multiforme, Meningioma, child
tumor −Medulloblastoma along
with secondary tumor- Metastatic

accuracy- 91.7

[85] 2D-A NA DWT- 4761 coefficients SOM, SVM normal or abnormal brain accuracy- (SOM- 94, SVM-linear-
96.15, SVM-polynomial- 98,
SVM-RBF- 98)

[86] 2D-A NA DWT  + PCA (1024 features to 7
features)

FFBPNN, kNN normal or abnormal accuracy- (ANN − 97, kNN-98.6),
MSE- 0.00001, OF- (ANN- 98.3,
kNN- 100), specificity- (ANN- 90,
kNN- 90)

[88] 3D-A noise removal by binary mask, BET overlapping windows, GLCM,
Moment invariants + GA (24
features reduced to 5)

k-means + HFS-SOM, EGS-SOM WM,  GM,  CSF MSE- 0.03

[89] 2D-A Histogram Equalization,
Binarization, Morphological
Operations

GLCM + GA + fuzzy rough set (20
features reduced to 7)

ANFIS Astrocytoma grade I to IV OF- 96.9, specificity- 95.6,
accuracy- 97

[90] 2D-A Anisotropic diffusion filter SWT, spatial filtering SOM, LVQ GM,  WM and other TC- (WM- 0.5481, GM-  0.6548),
Dice- (WM-  0.7001, GM-  0.7880)

[91] 2D-A NA Slantlet transform, intensity
histogram- 6 features

BPNN normal brain or a pathological
brain, suffering from Alzheimer’s
disease.

accuracy- 100, speed- feature
extraction- 0.39 s, neural network
training- 1.26s, implementation
phase- 5.946 ms  (per image)

[92] 2D-SA McStrip Multi-scale contrast, Curvature
feature, Motion perception

saliency weighted N-Cut
segmentation

normal and tumorous accuracy- 83.4 − 95, AUC - 0.76,
SM-  0.59, CC- 0.53

[93]  3D-A binary mask, sliding window overlapped sliding window,
Haralick features, Hu moments-
(24 first, second order and
invariant features) + PCA, NSGA-2

GHSOM with probability-based
clustering

WM,  GM,  CSF or Background TI calculated individually
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[94] 3D-SA median filter to remove intensity
irregularities

GLCM CBAC using SMF  and DMF
estimation

five different types of
homogeneous, heterogeneous,
diffused tumors

speed- 2 to 5s

[96]  3D-A Anisotropic diffusion filter for RF
inhomogeneity correction,

the square of intensity, the
Euclidean distance between pixels

Skull stripping by VFC + 3 SVM
classifiers

WM,  GM and CSF average of absolute error value of
GM- 1.6, WM-  3.9, speed- 1 h

[97]  2D & 3D-A Anisotropic diffusion filtering, local
entropy minimization and a
bicubic spline model method
(LEMS)

NA MsFCM, k-means three tissue types (labeled as
Classes I, II, and III)

Synthetic images- overlap ratios of
85 for CSF, 84 for GM,  92 for WM,
Real MR images- overlap ratios of
85 for CSF, 82 for GM,  88 for WM,
speed- 3mins

[99]  3D-A NA NA MRF-ACO- Gossiping algorithm NA DSC- IBSR dataset-0.664 Brainweb
dataset-0.762, speed- IBSR
dataset–144 s Brainweb
dataset–238 s

[100]  2D-A NA DWT  + PCA (1024 features reduced
to 19)

BPNN + SCG normal or abnormal accuracy- 100, speed- 0.0452s

[101]  2D & 3D-SA registeration using SPM windowing- 26 features, 2DWT,
feature-selection by optimization
of kernel class separability

Multi-kernel SVM normal or abnormal error- 0.109, accuracy- 95

[102]  2D-A NA Haar wavelet + PCA (1024 features
reduced to 19)

FFNN optimized via ACPSO normal or abnormal accuracy- 98.75, MSE- 1E-29,
speed- 0.0452 s

[103]  2D-A NA Fourier descriptor coefficients (FD),
moment invariants, Haralicks
texture features- (Texture
attributes:13, shape attributes:98)

Linear Vector Quantization malignant or benign accuracy- 85, speed- 16.64 s

[105]  2D-A intensity normalization self-learned features obtained from
CNN

CNN LG, HG OF and specificity with intersected
value of 0.6667

[107]  2D-A NA GLCM + GLRM + fuzzy entropy
measure

FFNN, MLP, BPNN normal or abnormal Accuracy- (FFNN- 76.19, MLP-
85.09, BPNN- 96.7), OF- (FFNN-
82.3, MLP- 76, BPNN- 72),
Specificity- (FFNN- 88.23, MLP-
86.75, BPNN- 84)

Abbreviations: A- Automatic; SA- Semi-Automatic; 2D-A- 2 Dimensional Automatic; 2D-SA- 2 Dimensional Semi Automatic; 3D-A- 3 Dimensional Automatic; 3D-SA- 3 Dimensional Semi Automatic; 2D & 3D-A- 2 Dimensional
&  3 Dimensional Automatic; 2D & 3D-SA- 2 Dimensional & 3 Dimensional Semi Automatic; WM-  White Matter; GM-  Grey Matter; CSF- cerebrospinal fluid;RGB- Red Green Blue; DSC- Dynamic Susceptibility Contrast; Dice/DOI-
Dice  Similarity Coefficient/Dice Overlap Index; MSE- Mean Square Error; PSNR- Peak Signal to Noise Ratio; JI/TC- Jaccard (TanimotoCoeffecient) Index; SI- Similarity Index;OF- Overlap Fraction/Sensitivity/Recall; EF- Extra
Fraction;  UQI- Universal Quality Index; NAE- Normalized Absolute Error; SS- Structural Similarity; NCC- Normalized Cross-Correlation;PPV- Positive Predictive Value; NPV- Negative Predictive Value; AUC- Area Under the
Receiver  Operating Characteristic Curve; VO- Volume Overlap;HD- Hausdorff Distance; SMD- Symmetric Mean Absolute Surface Distance; SSE- Sum Square Error; JSC- Jaccard’s Similarity Coefficient; SV- Spread Value; BEA- Brain
Extraction  Algorithm; MCC- Mathews Correlation Coefficient; SM-  Similarity Measure; CC- Correlation Coefficient; T2PCM- Type II Possibilistic C-Mean; DWT- Discrete Wavelet Transform; PCA- Principal Component Analysis;
FPCNN-  Feedback Pulse Coupled Neural Network; FFNN- Feed Forward Neural Network; ANN- Artificial Neural Network; CNN- Convolutional Neural Networks; DNN- Deep Convolutional Neural Networks; GRNN- Generalized
Regression Neural Network; RBF- Radial Basis Function; PNN- Probabilistic Neural Network; FPNNC- Fuzzy Probabilistic Neural Network Classifier; CFS- Correlation based Feature Set; RF- Random Forest; CBAC- Content Based
Active  Contour; GA- Genetic Algorithm; EHT- Extended Hyperbolic Tangent; UMCF- Unified Model based Classification with FCM; HG- High Grade; LG- Low Grade; AR- Association Rule; NN- Neural Network; AR-NN- Association
Rule  Based Neural Network; SOM- Self Organizing Maps; PSO- Particle Swarm Optimization; DPSO- Darwinian Particle Swarm Optimization; FODPSO- Fractional Order DPSO; DSD-MSA- Directional Spectral Distribution-Multi
Scale  Analysis; EWATS- Enhanced Watershed Segmentation; RLR- Regularized Logistic Regression; GLCM- Gray Level Co-occurrence Matrix; SVM- Support Vector Machine; kNN- k Nearest Neighbour; SRC- Sparse Representation
Classifier;  NSC- Nearest Subspace Classifier; LBP- Local Binary Patterns; ANFIS- Adaptive Neuro-Fuzzy Inference System; FCM- Fuzzy C-Means; KFCM- Kernelized Fuzzy C-Means; BSE- Brain Surface Extractor; KIFCM- K-Means
Integrated with Fuzzy C-Means; FFANN- Feed Forward Artificial Neural Network; FMMNN-FRE- Fuzzy Rule Extraction based on Fuzzy Min–Max Neural Networks; BET- Brain Extraction Tool; ROI- Region of Interest; FKM-Fuzzy
K-Means; SVM-RFE- Support Vector Machine-Recursive Feature Elimination;DWT- Discrete Wavelet Transforms; MFCM-  Modified FCM ;CFC- Collaborative Fuzzy Clustering; T2FIE- Type 2 Fuzzy Image Enhancement; ELM-IPSO-
Extreme Learning Machine-Improved Particle Swarm Optimization; LS-SVM-RBF Least Squares Support Vector Machines With Radial Basis Function; ARD-Automatic Relevance Determination; LDA- Linear Discriminant Analysis;
SMF-  Static Motion Field; DMF- Dynamic Motion Field; VFC- Vector Field Convolution; PNN- Probabilistic Neural Network; Nl means- Non-local means; EM-  Expectation Maximization; LoG- Laplacian of Gaussian; RILBP- Rotation
Invariant Local Binary Patterns; DGTF- Directional Gabor Texture Features; IBF- Intensity Based Features; RICGF- Rotation Invariant Circular Gabor Features; LaV- Lateral Ventricle; dwFCM- dynamically wavelet incorporated FCM;
DRLSM- Distance Regularized Level Set Method; LSFT-PNN- Least Squares Features Transformation-Probabilistic Neural Network; RF- Random Forest; MRF- Markov Random Field; CRF- Conditional Random Field; BFS- Backward
Floating  Search;RNN- Recurrent Neural Networks; SFLA- Shuffling Frog Leaping Algorithm; FBB- Fast Bounding Box;FFBPNN- Feed Forward Back Propagation Network; PCC- Pearson’s Correlation Coefficients; PCA- Principal
Component Analysis; ICA- Independent Component Analysis; GVF- Gradient Vector Flow; GRBF- Gaussian Radial Basis Function; HFS-SOM- Histogram Fast Volume Segmentation SOM; EGS-SOM- Entropy Gradient Segmentation
SOM;  SWT- Stationary Wavelet Transforms;LVQ- Learning Vector Quantization;BPNN- Back Propagation Neural Networks; Mcstrip- Minneapolis Consensus Strip; NSGA-2- Non-dominated Sorting Genetic Algorithm; GHSOM-
Growing Hierarchical Self-Organizing Map; VCF- Vector Field Convolution; MsFCM- Multiscale Fuzzy C-Means; MRF-ACO- Markov Random Field- Ant Colony Optimization; ACPSO- Adaptive Chaotic Particle Swarm Optimization;
SPM-  Statistical Parametric Mapping; GLRM- Gray Level Run Length Matrix; MLP- Multilayer Perceptron; HGG- High-Grade Glioma; LGG- Low-Grade Glioma; rCBV- relative Cerebral Blood Volume; GBM- Glioblastoma Multiforme;
MET-  Metastasis; MG-  Meningioma; GN- Granuloma; AIR- Automatic Image Registration; P map- isotropic component map  of the diffusion tensor; FA map- Fractional Anisotropy map of the diffusion tensor; FSL- FMRIB Software
Library;  FLIRT- FSL Linear Image Registration Tool; SCG- Scaled Conjugate Gradient; IBSR- Internet Brain Segmentation Repository; NA- Not Applicable; NM-  Not Mentioned.
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Table  2
Review of data collection.

Paper Modalities Dataset used(N/A) Database

[2] T1w 95 patients NA
[13] axial, T2w 256-256 pixel Harvard
[16] T1, T2, T1C, FLAIR 30 patient (20 HG, 10 LG) BRATS 2013
[31] NA 50 images NA
[33] T1C 360 EKO CT & MRI  Scan Centre at Medical College and

Hospitals Campus, Kolkata
[34] T1C 428 of 55 patients, 260 of 10 patients dataset 1- PGIMER; dataset 2- Harvard
[35] T1w, T2w, T1c, FLAIR 5 different slices of 22 high grade and 15

low-grade tumors (=185) and 20 synthetic data
BRAT 2012

[36] T1c 172 IBSR
[37] Coronal, sagittal and axial T1w, T2w, FLAIR 38 images KGS Advanced MR  & CT Scan – Madurai, Tamilnadu, India

&  Harvard Brain Repository.
[38] axial T2w 30 normal, 20 abnormal Harvard
[39] axial T1w, T2w 106 T1, 53 T2-w Government General Hospital, Puducherry, India, Christian

Medical College, Vellore, India and Devi Scans,
Thiruvananthapuram, India.

[40] T1w, T2w, T1c 10 BRATS2012
[41] T1w, FLAIR 25 real and simulated MR  images (181

slices/subject)
NCI-MICCAI 2013

[42] NA 200 NA
[43] T1w, T1c, FLAIR 20 NA
[44] T1, T2, PDw, FLAIR, T1c 255 DICOM, Brain Web  data set, BRATS
[45] T2w FSE (Fast Spin Echo), T1w FFE(fast field

echo)
15 patients (9 LG, 6 HG) and 6 healthy patients San Raffaele Hospital, Milan

[46] Axial 3D T1w, sagittal 3D T2w, FLAIR, Axial 3D
T1wce, T2*w dynamic susceptibility perfusion
MRI

98 patients, 102 brain tumors NA

[47] NA NA open access web
Source www.brainweb.org.

[49] T1c, T2w 550 patients, 64 slices/patient, 550 patients,
280 benign tumors, 270 malignant tumors

ShirdiSai Cancer Hospital, Manipal, India

[50] axial T1w 95 MRI  scans- 85 patients with Astrocytomas,
10 normal patients

NA

[52] T1w, T1c, 1H-MRSI 35 patients; 12 meningiomas and 23 gliomas PSG IMSR & Hospitals, Coimbatore, Tamilnadu, India
[55] T1w, T2w, PDw, T1c, MRSI 25 patients with brain tumor, 4 normal

patients
INTERPRET project database and the University Medical
Center Nijmegen (UMCN)

[56] NA Dataset 1- 70 training samples, 35 testing
samples, Dataset 2- 24 training samples, 20
testing samples

Government Hospital of Aurangabad and Sahyadri
Hospital of Pune, Maharashtra, India

[57] Tlw, Tlwc, T2w 129 training sets(43*3 reader), 43 patients, 33
malignant, 10 benign Test set- 36 patients(1
reader)

NA

[58] NA 100 cases- 41LG, 59 HG Department of Pathology of the University Hospital of
Patras, Greece

[59] T1w 65 images 40 Brain web  data, 25 IBSR V2.0
[60] T2w, T2c 320 slices Harvard
[62] T1w 428 MR images from 55 patients, 428 normal

regions (NR).
Department of Radiodiagnosis, Postgraduate Institute of
Medical Education and Research (PGIMER), Chandigarh,
India

[63] T1w, T2w, T1Cw, Flair 660,000 data points from 11 cases Whole Brain Atlas of med.harvard and MICCAI 2012
Challenge on Multimodal Brain Tumor
Segmentation-BRATS2012

[65] NA 250 brain tumor MRI images BRATS
[66] axial T2w 10 slices whole brain atlas (WBA) maintained by Harvard medical

school
[67] T1, T1c, T2, FLAIR BRATS 2013- 65 MR scans BRATS 2013 and 2015

BRATS 2015- 327 MR scans
[70] T1w 67 MR  images General Hellenic Airforce Hospital, MRI  Unit, Katehaki,

Athens, Greece
[72] FLAIR, T1w, T1c, T2w 30 glioma patients, 10 LG, 20 HG BRATS 2013
[73] T1, T2 DS1-280 glioma (169 LG, 111 HG), DS2- 154

cases (85 LG, 69 HG)
Hua–Shan Hospital in Shanghai of China.

[75] T1, T2 NA State University of Campinas, School of Medicine
(FCMUNICAMP), Campinas, Brazil

[76] T1c, T2, FLAIR 30 patient (20 HG, 10 LG), 30 simulated
subjects

BRATS 2013

[79] T2w 200 images- 164 trainig set (82 LG, 82HG), 36
testing set (18 LG, 18HG)

Dr.Shajis MRI  & Medical Research 709 Centre Pvt.Ltd,
Puthiyara, Calicut

[81] NM 130 MR  images- 33 Grade II, 44 Grade III, 53
Grade IV

NM

[82] T2w, T1w, T1c, (DSC) 101 patients, 63 HG, 38 LG NA
[83] T1c 55 patients, 428 MR images, 856 ROIs Department of Radiodiagnosis, Postgraduate Institute of

Medical Education & Research (PGIMER), Chandigarh, India
[84] T1c 55 patients, 428 MR images Department of Radiodiagnosis, Postgraduate Institute of

Medical Education & Research (PGIMER), Chandigarh, India

http://www.brainweb.org
http://www.brainweb.org
http://www.brainweb.org
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Table  2 (Continued)

Paper Modalities Dataset used(N/A) Database

[85] axial T2w 52 MR  brain images- 6 normal brains, 46
abnormal brains (affected by Alzheimer’s
disease)

Harvard

[86] axial T2w 70, 60 abnormal, 10 normal Harvard
[88] T1w volumetric images IBSR 1.0- 20 images, IBSR 2.0- 18 images IBSR 1.0, IBSR 2.0
[89] NM NM web resource http://mouldy.bic.mni.mcgill.ca/brainweb/
[90] T1-w 20 normal people IBSR database
[91] axial T2w 75 transaxial image slices (39 normal brains,

36 pathological brain, suffering from
Alzheimer’s disease)

Harvard

[92] Dataset 1- T1w, T2w, PDw dataset 3- 25 patients with gliomas dataset 1- Brain web tumor repository, dataset 2- Harvard
medical school, dataset 3- radiology department of
Pakistan Institute of Medical Sciences (PIMS)

Dataset 2- T1w
Dataset 3- T1w, T2w

[93] axial, coronal, sagittal T1w 20 images IBSR
[94]  T1w, T1c, T2w dataset1- 428 images of 45 subjects, dataset2-,

260 images of 10 subjects
dataset1- PGIMER, dataset2- Harvard

[96]  T1w 10 MR images Internet-connected MRI  simulator at the McConnell Brain
Imaging Centre in Montreal

[97] T1w, T2w, PDw 30 synthetic images synthetic images and McGill brain MR database (McConnel
Brain Imaging Center, McGill University, Quebec, Canada)

[99]  T1w, T2w, PDw (single and multispectral MRIs) Dataset 1- 20 normal MRI  Dataset 1- Internet Brain Segmentation Repository (IBSR),
by the Center for Morphometric Analysis (CMA) at
Massachusetts General Hospital

Dataset 2- simulated 3D MR images Dataset 2- BrainWeb Simulated Brain Dataset from the
McGill University

[100] axial T2w 66 images- 18 normal, 48 abnormal Harvard
[101] T2w, PDw, FLAIR 11 patients CHU de Caen and Tiantan Hospital, Beijing
[102] axial T2w 160 images (20 normal, 140 abnormal) Harvard

nt, 40
5 LG 

al, 17

w
d
m
o
i
G
b
t
p

M
e
t
r
n
m
I
s
p

5

fi
t
s
g
e
i
t
b
m
i

[103] NA 80 images- 40 maligna
[105]  NA 195 patient- 170 HG, 2
[107] NA 42 patients- 25 abnorm

An approach to be highlighted is the Deep Learning which deals
ith learning complex features automatically and directly from
ata. A review in [34] about the high performances of deep learning
ethods reveals that it can be considered as the current state-

f-the-art for glioma segmentation. Reference [44] concluded that
n forthcoming research works, a dataset consisting of class like
lioma and subclasses like high and low-grade Astrocytoma must
e gathered for classification. Also, it is seen that [92], 7T MRI  con-
ributes to the additional insight of pathogenesis of brain tumor
aving path for new treatment developments.

Lastly, because glioma grade depends on the appearance of
R images, tumor segmentation model must exclude contrasts

nhanced blood vessels and include tumor areas with con-
rast enhancement [20]. Also to keep track of tumor growth or
ecurrence, repeated invasive procedures are uncommon, making
on-invasive methods common. But at the same time, automatic
ethods has to be closely equivalent to radiologist perception [22].

f this is unachievable by a fully automatic method, interactive i.e.
emi-automatic methods that can be user initialized come into the
icture.

. Conclusion

A consolidated review on the recent segmentation and classi-
cation techniques on Brain MR  Images gathers the knowledge
hat early detection of a brain tumor and its grade is a stepping
tone to further studies. The digital image processing methodolo-
ies along with machine learning techniques aid radiologists in
fficient diagnosis, as hybrid techniques provide a second opin-
on and assistance to them. The review has focused on the latest

rends in segmentation and classification of tumor-bearing human
rain MR  images having gliomas which include astrocytoma. The
ethodologies used in various approaches were discussed with an

ntention for applying practically these methods for clinical appli-
 benign open source database and some hospitals
BRATS 2014

 normal NA

cation. This survey brings to the notice that though there is the
achievement of high classification accuracy, these techniques were
tested on two broad categories of malignant and benign/Low Grade
and High Grade and further classification of tumor types like WHO
grading system was  not considered. This review is designed leav-
ing trails towards the development of an image processing and
machine learning approach dedicated towards grading of brain
tumor especially the most incident of gliomas: Astrocytomas.
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