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a b s t r a c t

Medical image fusion plays an important role in clinical applications such as image-guided surgery,
image-guided radiotherapy, noninvasive diagnosis, and treatment planning. The main motivation is to
fuse different multimodal information into a single output. In this instance, we propose a novel
framework for spatially registered multimodal medical image fusion, which is primarily based on the
non-subsampled contourlet transform (NSCT). The proposed method enables the decomposition of
source medical images into low- and high-frequency bands in NSCT domain. Different fusion rules are
then applied to the varied frequency bands of the transformed images. Fusion coefficients are achieved
by the following fusion rule: low-frequency components are fused using an activity measure based on
the normalized Shannon entropy, which essentially selects low-frequency components from the focused
regions with high degree of clearness. In contrast, high-frequency components are fused using the
directive contrast, which essentially collects all the informative textures from the source. Integrating
these fusion rules, more spatial feature and functional information can be preserved and transferred into
the fused images. The performance of the proposed framework is illustrated using four groups of human
brain and two clinical bone images from different sources as our experimental subjects. The experi-
mental results and comparison with other methods show the superior performance of the framework in
both subjective and objective assessment criteria.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

To support more accurate clinical information to physicians for
better diagnosis, multimodal medical images are needed, such as
X-ray, computed tomography (CT), magnetic resonance imaging
(MRI), and magnetic resonance angiography (MRA). Medical image
fusion helps physicians to extract features from different modal-
ities that may not be normally visible in the images. For example,
the CT image can show dense structures like bones and implants
with less distortion, but it cannot detect physiological changes,
while the MR image can provide normal and pathological soft
tissues information, but it cannot support the bones information
[1]. Even a single modality can provide complementary and
occasionally conflicting information due to its dependence on
variable parameters. For instance, T1 weighted MR imaging gives
enhanced detail of anatomical structures whereas T2 weighted MR
imaging gives greater contrast between normal and abnormal
tissues. Therefore, only one kind of multimodal image may not be

sufficient to provide accurate clinical requirements to the physi-
cians [1].

So far, many image fusion frameworks have been proposed in
the literature [2–9] with some specific for multimodal medical
image fusion [10–21]. These frameworks can be broadly classified
into three categories based on the stage at which the combination
mechanism takes place. This characterization includes pixel-level
or sensor-level, feature-level, and decision-level fusion [2]. Among
these, the most popular framework is pixel-level fusion due to the
advantage of containing the originally measured quantities, easy
implementation and computationally efficient [7]. Hence, in this
paper, we concentrate our efforts on pixel level-fusion, and the
terms image fusion or fusion are intently used for pixel level fusion
throughout the paper. The well-known pixel-level frameworks are
based on principal component analysis (PCA), independent com-
ponent analysis (ICA), gradient pyramid (GP) filtering, etc. [22–25].
These approaches are not fully suitable for the application of
medical image fusion since the features are sensitive to the human
visual system existing in different scales [12]. Therefore, a multi-
scale or multiresolution analysis is more suitable for the fusion
purposes. With the development of multiresolution analysis,
wavelet transform has been identified as an ideal method for
fusion. However, it is argued that wavelet decomposition is good
at isolated discontinuities, but with a poor performance at edges
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and textured regions. Further, it captures limited directional
information along vertical, horizontal and diagonal directions
[13]. These issues are rectified in a recent multiscale decomposi-
tion, namely contourlet and its non-subsampled version. Contour-
let is a “true” 2-D sparse representation for 2-D signals like images
where sparse expansion is expressed by contour segments. As a
result, it can capture 2-D geometrical structures in visual informa-
tion much more effectively than the traditional multiscale meth-
ods [26]. In contrast, NSCT inherits all the advantages of contourlet
transform along with shift-invariance property and effectively
suppressing pseudo-Gibbs phenomena. Hereafter, some authors
have proposed image fusion framework using NSCT [17–21].
Among these, most of the frameworks are implemented in multi-
focus fusion. If implemented for medical imaging, the results are
not of the same quality as those for the multimodal medical image
fusion. The main reason is the structure of medical images. Due to
this fact, traditional fusion rules such as weighted average,
absolute maximum, spatial frequency and saliency do not effi-
ciently utilize prominent information present in the low- and
high-frequency coefficients and result in the poor quality [21].
Therefore, two new fusion rules are proposed in this work to
address these issues.

In this paper, a fully automated framework for medical image
fusion is proposed in the non-subsampled contourlet transform
(NSCT) domain. After the source images are decomposed by the
NSCT, the coefficients of the low- and high-frequency portions are
fused using two different fusion processes, which are chosen
considering the physical meaning of the coefficients. Therefore,
the coefficients of the low- and high-frequency bands are treated
differently: the former is selected with an activity measurement
process, and the latter is selected by a contrast based process. The
fused image is then obtained by taking inverse NSCT transform on
the fused low- and high-frequency coefficients. Both qualitative
and quantitative performance evaluations are carried out to
validate the proposed framework. The final fused images are
obtained by applying inverse NSCT on the fused low- and high-
frequency coefficients. Extensive experiments on different multi-
modal CT/MRI and MR-T1/MR-T2 data-sets are carried out along
with two clinical examples. Performance comparison of the
proposed framework with the existing methods demonstrates
the efficiency of the proposed method.

The rest of the paper is organized as follows. The NSCT is
described in detail in Section 2 followed by the introduction of
multimodal medical image fusion framework in Section 3. Experi-
mental results and discussion are given in Section 4 and the
concluding remarks are presented in Section 5.

2. Non-subsampled contourlet transform (NSCT)

NSCT based on the theory of countourlet transform (CT) is a
kind of multi-scale and multi-direction computation framework of
the discrete images [26]. It can be divided into two phases
including non-subsampled pyramid (NSP) and non-subsampled
directional filter bank (NSDFB). The former phase ensures the
multiscale property by using two-channel non-subsampled filter
bank, producing one low-frequency and one high-frequency image
at each NSP decomposition level. Subsequent NSP decomposition
stages are carried out to decompose the available low-frequency
component iteratively to capture the singularities in the image. As
a result, NSP results in kþ1 sub-images, which consist of one low-
and k high-frequency images having the same size as the source
image where k denotes the number of decomposition levels. Fig. 1
(a) shows the NSP decomposition with k¼3 levels. The NSDFB is
two-channel non-subsampled filter bank which is constructed by
combining the directional fan filter banks. NSDFB allows the

direction decomposition with l stages in high-frequency images
from NSP at each scale and produces 2l directional sub-images
with the same size as the source image. Therefore, NSDFB offers
the NSCT with the multi-direction property and provides us with
more precise directional details information. A four channel
NSDFB constructed with two-channel fan filter banks is illustrated
in Fig. 1(b).

3. Proposed multimodal medical image fusion framework

The proposed framework realizes on a new definition of the
directive contrast in NSCT domain, which takes a pair of source
image denoted by A and B to generate a composite image F. The
basic condition in the proposed framework is that all the source
images must be registered in order to align the corresponding
pixels. The definition of the directive contrast and the proposed
fusion framework are described below.

3.1. Directive contrast in NSCT domain

The contrast feature measures the separation between the
intensity values of a pixel and its neighboring pixels. The human
visual system is highly sensitive to the intensity contrast rather
than the intensity value itself. Generally, the same intensity value
looks like a different intensity value depending on intensity values
of neighboring pixels. Therefore, local contrast is developed and is
defined as [27]

C ¼ L�LB
LB

¼ LH
LB

ð1Þ

where L is the local luminance and LB is the luminance of the local
background. Generally, LB is regarded as local low-frequency and
hence, L�LB ¼ LH is treated as local high-frequency. This definition
is further extended as directive contrast for the multimodal image
fusion. These contrast extensions take high-frequency as the pixel
value in multiresolution domain. However, considering single
pixel is insufficient to determine whether the pixels are from clear
parts or not. Therefore, directive contrast is integrated with the
sum-modified Laplacian [28] to get salient features.

In general, the larger absolute values of high-frequency coeffi-
cients correspond to the sharper brightness in the image and lead
to the salient features such as edges, lines, and region boundaries.
However, these are very sensitive to the noise, which can be taken
as the useful information and leading to misinterpretation of the
actual information in the fused images. Hence, a proper way to
select high-frequency coefficients is necessary to ensure better
information interpretation. The sum-modified Laplacian is inte-
grated with the directive contrast in NSCT domain to produce
accurate salient features. Mathematically, the directive contrast in
NSCT domain is given by

Dl;θði; jÞ ¼
SMLl;θði; jÞ

Ilði; jÞ
if Ilði; jÞa0

SMLl;θði; jÞ if Ilði; jÞ ¼ 0

8><
>: ð2Þ

where SMLl;θ is the sum-modified Laplacian of the NSCT frequency
bands at scale l and orientation θ. On the other hand, Ilði; jÞ is the
low-frequency sub-band at the coarsest level (l). The sum-
modified Laplacian is defined by the following equation:

SMLl;θði; jÞ ¼
Xiþm

x ¼ i�m

Xjþn

y ¼ j�n

∇2
l;θIðx; yÞ ð3Þ

where

∇2
l;θIði; jÞ ¼ j2Il;θði; jÞ� Il;θði�step; jÞ� Il;θðiþstep; jÞj

þ j2Il;θði; jÞ� Il;θði; j�stepÞ� Il;θði; jþstepÞj ð4Þ
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In order to accommodate possible variations in the size of texture
elements, a variable spacing (step) between the pixels is used to
compute SML and it is always equal to 1 [28]. The proposed directive
contrast, defined by Eq. (2), not only extracts more useful features
from high-frequency coefficients but also effectively deflects noise to
be transferred from high-frequency coefficients to the fused
coefficients.

3.2. Proposed fusion framework

In this subsection, the proposed fusion framework will be
discussed in detail. Considering, two perfectly registered source
images A and B, the proposed image fusion approach consists of
the following steps:

1. Perform ℓ-level NSCT on the source images to obtain one low-
frequency and a series of high-frequency sub-images at each
level and direction θ, i.e.,

A : fCAℓ ; CAl;θg and B : fCBℓ; CBl;θg ð5Þ
where Cn

ℓ are the low-frequency sub-images and Cn

l;θ represents
the high-frequency sub-images at level lA ½1;ℓ� in the orienta-
tion θ.

2. Fusion of low-frequency sub-images: The coefficients in the low-
frequency sub-images represent the approximation component
of the source images. The simplest way is to use the conven-
tional averaging method to produce the composite bands.
However, they cannot give the fused low-frequency component
of high quality for medical image because it leads to the
reduced contrast in the fused images. Therefore, a new criterion
is proposed here based on the activity measurement of the
low-frequency coefficients. The complete process is described
as follows:
� First, the activity measurement for the low-frequency coef-

ficients is obtained in a region R centered at (x,y) using the
normalized Shannon entropy as

EAðx; yÞ ¼
1
jRj

X
i;jAR

ðCAℓði; jÞÞ2log ðCAℓði; jÞÞ2 ð6Þ

EBðx; yÞ ¼
1
jRj

X
i;jAR

ðCBℓði; jÞÞ2log ðCBℓði; jÞÞ2 ð7Þ

where jRj is the size of the region, which essentially is the
total number of coefficients contained in R.

� Extract the salient information from low-frequency coeffi-
cients of each image at location (x,y) as

SAðx; yÞ ¼
EAðx; yÞ

EAðx; yÞþEBðx; yÞ
ð8Þ

SBðx; yÞ ¼
EBðx; yÞ

EAðx; yÞþEBðx; yÞ
ð9Þ

� Fuse the low-frequency coefficients as

CFℓðx; yÞ ¼ SAðx; yÞCAℓðx; yÞþSBðx; yÞCBℓðx; yÞ ð10Þ
It is evident that entropy is an efficient and widely used tool
to quantify the information contained in an image. The
motivating factor for using entropy is that the human vision
is sensitive to the area that has a sharp change in contrast.
Therefore, the proposed activity measure utilizes entropy to
highlight the transition between the focused (sharp) and
defocused (blur) regions in the low-frequency components.
According to the proposed activity measure, given in
Eqs. (6) and (7), the maximum value of entropy represents
the coefficients having the same frequency in the region, which
further indicates the defocused (blur) regions. Hence, low-
frequency fusion rules will decide the degree of clearness in
the coefficients and provide an efficient way to collect coeffi-
cients from focused regions in the fused low-freq-
uency coefficients.

3. Fusion of high-frequency sub-images: The coefficients in the
high-frequency sub-images usually include detail components
of the source image. It is noteworthy that the noise is also
related to high-frequencies and may cause miscalculation of
sharpness value and therefore affects the fusion performance.
Therefore, a new criterion is proposed here based on directive
contrast. The whole process is described as follows:
� First, obtain the directive contrast for NSCT high-frequency

sub-images at each scale and orientation using Eqs. (2)–(4),
denoted by DCAl;θ and DCBl;θ at each level lA ½1;ℓ� in the
direction θ.

� Fuse the high-frequency sub-images as

CFl;θðx; yÞ ¼
CAl;θðx; yÞ if DCAl;θ ðx; yÞZDCBl;θ ðx; yÞ
CBl;θðx; yÞ if DCAl;θ ðx; yÞoDCBl;θ ðx; yÞ

8><
>: ð11Þ

4. Perform ℓ-level inverse NSCT on the fused low-frequency ðCFℓÞ
and high-frequency ðCFl;θÞ subimages, to get the fused image (F).

Fig. 1. (a) Three-stage non-subsampled pyramid decomposition. (b) Four-channel non-subsampled directional filter bank.
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4. Results and discussion

Some general requirements for fusion algorithm are (1) it
should be able to extract and integrate complimentary features
from the input images, (2) it must not introduce artifacts or
inconsistencies according to Human Visual System and (3)
it should be robust and reliable. Generally, these can be evaluated
subjectively and/or objectively. The former relies on human visual
characteristics and the specialized knowledge of the observer,
hence are vague and time-consuming but are typically accurate
if performed correctly. The other one is relatively formal and is
easily realized by the computer algorithms, which generally
evaluates the similarity between the fused and source images.
However, selecting a proper consistent criterion with the subjec-
tive assessment of the image quality is rigorous. Hence, there is a
need to establish an evaluation system. Therefore, an evaluation
index system is set up to evaluate the proposed fusion algorithm.
These indices are determined according to the statistical para-
meters. The mathematical definitions of these metrics are as
follows [29]:

1. Information theory-based metrics: The normalized mutual infor-
mation metric utilizes the concept of mutual information to
find the similarity between the images. Mutual information
(MI) is a quantitative measure of the mutual dependence of
two variables, It usually shows measurement of the informa-
tion shared by two images. Mathematically, MI between two
discrete random variables U and V is defined as

MIðU;VÞ ¼
X
uAU

X
vAV

pðu; vÞlog 2
pðu; vÞ
pðuÞpðvÞ ð12Þ

where pðu; vÞ is the joint probability distribution function of U
and V whereas p(u) and p(v) are the marginal probability
distribution functions of U and V respectively. Based on the
above definition, the quality of the fused image with respect to
the input images A and B can be expressed as

QMI ¼ 2
MIðA; FÞ

HðAÞþHðFÞþ
MIðB; FÞ

HðBÞþHðFÞ

� �
ð13Þ

where HðAÞ;HðBÞ and H(F)is the marginal entropy of images A, B
and F respectively.

2. Image structural similarity-based metrics: Structural similarity
(SSIM) is designed by modeling any image distortion as the
combination of loss of correlation, radiometric and contrast
distortion. Mathematically, SSIM between two variables U and
V is defined as

SSIMðU;VÞ ¼ σUV

σUσV

2μUμV

μ2
Uþμ2

V

2σUσV

σ2
Uþσ2

V

ð14Þ

where μU and μV are the mean intensities and σU ;σV ; σUV are
the variances and covariance respectively. Based on the defini-
tion of SSIM, a new way to use SSIM for the image fusion
assessment is proposed in [30] and is defined as

QS ¼

λðwÞ SSIMðA; FjwÞþð1�λðwÞÞ SSIMðB; FjwÞ;
if SSIMðA;BjwÞZ0:75

max½SSIMðA; FjwÞ; SSIMðB; FjwÞ�;
if SSIMðA;BjwÞo0:75

8>>>><
>>>>:

ð15Þ

wherew is a sliding window of size 3�3, which moves pixel by
pixel from the top-left to the bottom-right corner and λðwÞ is
the local weight obtained from the local image salience.
See [30] for the detailed implementation of the aforementioned
metric.

3. Image feature-based metrics: This metric uses the edge based
similarity measure to find the similarity between the images.
Mathematically, QAB=F is defined as

QAB=F ¼
PM

i ¼ 1
PN

j ¼ 1½QAF
i;j w

x
i;jþQBF

i;j w
y
i;j�PM

i ¼ 1
PN

j ¼ 1½wx
i;jþwy

i;j�
ð16Þ

where A, B and F represent the input and fused images respectively.
The definition of QAF and QBF are same and given as

QAF
i;j ¼QAF

g;i;jQ
AF
α;i;j; QBF

i;j ¼QBF
g;i;jQ

BF
α;i;j ð17Þ

where Q⋆F
g and Q⋆F

α are the edge strength and orientation
preservation values at location (i,j) respectively for images A and
B. The dynamic range for QAB=F is [0,1] and it should be as close to
1 as possible for better fusion.

CT-MR Data Set MR_T1-MR_T2 Data Set
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Fig. 2. Multimodal medical image data sets: (a,e) CT image, (b,f) MR image, (c,g) MR-T1 image, and (d,h) MR-T2 image.
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To evaluate the performance of the proposed image fusion
approach, four different data sets of human brain are considered
(see Fig. 2). These images are characterized in two different groups:
(1) CT–MR and (2) MR-T1–MR-T2. The images in Fig. 2(a,e) and (b,f)
are CT and MR images whereas Fig. 2(c,g) and (d,h) T1-weighted MR
image (MR-T1) and T2-weighted MR image (MR-T2), respectively.
The corresponding pixels of two input images have been perfectly
co-aligned. All images have the same size of 256�256 pixel, with
256-level gray scale. The proposed medical fusion technique is
applied to these image sets.

It can be seen that due to various imaging principles and
environments, the source images with different modalities contain
complementary information. For all these image groups, results of
the proposed fusion framework are compared with the traditional
PCA [22], Gradient Pyramid [5], wavelet [10], contourlet [12] and
non-subsampled contourlet [20,21] based methods. The comparison
of statistical parameters for the fused images according to different

fusion algorithms is shown in Table 1 and visually in Figs. 3–6. From
figure and table, it is clear that the proposed algorithm not only
preserves spectral information but also improves the spatial detail
information over all existing algorithms, which can be easily
observed by the obtained maximum values of evaluation indices
(highlighted in bold in the Table 1).

The PCA algorithm gives baseline results. For all experimental
images, PCA based methods give poor results relative to other
algorithms. This was expected because this method has no scale
selectivity. This limitation is rectified in pyramid and multiresolu-
tion based algorithms but on the cost of quality i.e., the contrast of
the fused image is reduced which is greater in pyramid based
algorithms and comparatively lesser in multiresolution based
algorithms. Among multiresolution based algorithms, the pro-
posed algorithm based on NSCT performs better. The main reason
behind the better performance is the use of directive contrast
which essentially takes the advantage of both contrast and

Table 1
Evaluation indices for fused medical images.

Images Indices PCA Gradient [5] Wavelet [10] Contourlet [12] NSCT-1 [20] NSCT-2 [21] Proposed

DS 1 QMI 2.6001 1.3869 1.5420 1.6025 1.8028 1.8499 1.8503
QS 0.5133 0.4297 0.4187 0.4277 0.4651 0.4703 0.4725

QAB=F 0.6092 0.6637 0.5175 0.6485 0.6652 0.6814 0.6772

DS 2 QMI 1.3646 1.2793 1.2740 1.3244 1.4497 1.4759 1.4899
QS 0.7985 0.7173 0.7737 0.7928 0.7837 0.8108 0.8142

QAB=F 0.3686 0.5769 0.5090 0.5923 0.5678 0.5853 0.5931

DS 3 QMI 3.6627 2.5205 3.0773 3.8314 3.9161 3.9133 3.9493
QS 0.6760 0.6508 0.6585 0.6674 0.6561 0.6892 0.6950

QAB=F 0.6645 0.6942 0.6176 0.6816 0.6841 0.6961 0.6992

DS 4 QMI 1.4915 1.2983 1.3349 1.3413 1.5502 1.5085 1.5170
QS 0.8414 0.8130 0.8259 0.8303 0.8743 0.8976 0.8989

QAB=F 0.3434 0.5613 0.4635 0.5689 0.5699 0.5724 0.5691

Fig. 3. The multimodal medical image fusion results for data set 1: fused images from (a) PCA [22], (b) Gradient Pyramid [5], (c) wavelet [10], (d) contourlet [12], (e) non-
subsampled contourlet [20], (f) non-subsampled contourlet [21], and (g) proposed technique.

G. Bhatnagar et al. / Neurocomputing 157 (2015) 143–152 147



visibility. Further, the shift-invariance property of NSCT produces
clearer and more natural fused image than other multiresolution
based fused results. This is also justified by the fact that shift-
invariant decomposition overcomes pseudo-Gibbs phenomena
successfully and improves the quality of the fused image around
edges. Further, the effect of different region sizes (used in the
fusion of low-frequency components) on the fused images is given

in Table 2. It is clear from the table that there is a negligible
increment in the indices, which essentially proves that the quality
of the fused image is persistent with the change in the region size.

Finally, a comparative study on computational complexities has
been done to explore efficiency of the proposed work. In this
study, the execution times of various fusion methods for the used
data sets are considered. The final timing for execution is depicted

Fig. 4. The multimodal medical image fusion results for data set 2: fused images from (a) PCA [22], (b) Gradient Pyramid [5], (c) wavelet [10], (d) contourlet [12], (e) non-
subsampled contourlet [20], (f) non-subsampled contourlet [21], and (g) proposed technique.

Fig. 5. The multimodal medical image fusion results for data set 3: Fused images from (a) PCA [22], (b) Gradient Pyramid [5], (c) wavelet [10], (d) contourlet [12], (e) non-
subsampled contourlet [20], (f) non-subsampled contourlet [21], and (g) proposed technique.
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in Table 3. The execution times are found by running all the
algorithms in MATLAB on a terminal with Intel Core 2 Duo-
2.6 GHz processor with 4 GB RAM. The code for each fusion

method is executed 8 times and the average time for each data
set is presented in the table. The execution time for NSCT based
techniques is comparatively high when compared to the other
methods, which is quiet obvious since NSCT has no fast algorithm.
In contrast, the execution time of the proposed method is
comparable with that of other NSCT methods. Although the
proposed framework needs more execution time but it obtains
much clearer and more natural fused image.

5. Clinical applications

In order to demonstrate the practical value of the proposed
scheme in medical imaging, two clinical cases are considered where
X-ray and bone scan medical modalities are used. An
X-ray is primarily used to determine if there is damage to bones
such as a fracture or dislocated joint and locate a foreign object
(i.e., bullet). A bone scan, on the other hand, is a nuclear scanning test
by which certain bone abnormalities can be identified. It is generally
used to diagnose a number of bone related conditions, including,
bone inflammation (bone pain due to a fracture), light fractures that
may not be visible in X-ray, damage bone detection (due to certain
infections) and cancer of the bone. The result of bone scan can be
viewed in ‘hot’ and ‘cold’ spots. Hot spots appear darker and denote
an area of high tracer uptake whereas cold spots appear light and
indicate the area of less tracer uptake. Hot spots usually indicate the
affected area in the bones and the perfect location can be obtained by
combining X-rays with the bone scans.

The first case is of a 59-year-old female who is experiencing the
right calcaneal discomfort from 12 months. The X-ray was performed
for the possibility of fracture and no fracture was found (see Fig. 7(a)).
After her complains of continued pain, a bone scan was performed
where a focus of increased tracer activity has been identified, as
depicted in Fig. 7(b). The X-ray is then fused with the bone scan image
that identified the location to the medial part of the anterior portion of

Fig. 6. The multimodal medical image fusion results for data set 4: fused images from (a) PCA [22], (b) Gradient Pyramid [5], (c) wavelet [10], (d) contourlet [12], (e) non-
subsampled contourlet [20], (f) non-subsampled contourlet [21], and (g) proposed technique.

Table 2
Evaluation indices for proposed fusion framework using different region sizes.

Images Indices 3�3 5�5 7�7 9�9 11�11

DS 1 QMI 1.8503 1.8589 1.9621 2.0780 2.1931
QS 0.4725 0.4786 0.4980 0.5045 0.5051

QAB=F 0.6772 0.6794 0.6804 0.6804 0.6808

DS 2 QMI 1.4899 1.4969 1.5102 1.5572 1.5597
QS 0.8142 0.8193 0.8199 0.8203 0.8206

QAB=F 0.5931 0.5974 0.5992 0.6042 0.6074

DS 3 QMI 3.9493 3.9495 3.9495 3.9496 3.9498
QS 0.6950 0.6956 0.6963 0.6963 0.6964

QAB=F 0.6992 0.6994 0.6997 0.6998 0.6999

DS 4 QMI 1.5170 1.5196 1.5197 1.5197 1.5208
QS 0.8989 0.8993 0.8994 0.8996 0.8996

QAB=F 0.6992 0.5703 0.5735 0.5735 0.5757

Table 3
Execution time (in seconds) comparison.

Images PCA Gradient
[5]

Wavelet
[10]

Contourlet
[12]

NSCT-1
[20]

NSCT-2
[21]

Proposed

DS 1 0.0328 0.1249 0.0780 1.9682 2.2220 2.2245 2.2198
DS 2 0.0311 0.1267 0.0766 1.9649 2.2235 2.2236 2.2232
DS 3 0.0333 0.1262 0.0759 1.9522 2.2198 2.2189 2.2194
DS 4 0.0320 0.1268 0.0783 1.9632 2.2114 2.2122 2.2119
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Fig. 7. Clinical Case 1: (a) X-ray image and (b) bone scan image; Clinical Case 2: (c) X-ray image and (b) bone scan image.

Fig. 8. Clinical Case 1: fused image from (a) Guihong et al. [10], (b) Yang et al. [12], (c) Das et al. [20], (d) Yang et al. [21], and (e) proposed technique.
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the subtalar joint (Fig. 8). This abnormality is unlikely to represent
residual activity associated with a fracture as it does not spread
significantly into either adjacent talus or calcaneum.

The second case is of a 57-year-old female with ongoing right hip,
groin and buttock pain after a fall several months earlier. Again the X-
ray was normal but the results of bone scanwere remarkable. Delayed
images showed a mild focal uptake in the right greater trochanter in
keeping with avulsion injury/enthesopathy at the insertion of the
gluteus muscles, see Fig. 7(d). After fusion, mild increased uptake is
noted at the superior aspect of both hip joints corresponding to
marginal osteophytes seen on X-ray (Fig. 9).

Here, the results are compared with the best four algorithms
obtained from the earlier analysis, i.e., Guihong et al. [10], Yang
et al. [12], Das et al. [20] and Yang et al. [21]. From Figs. 8 and 9, it
can be observed that all the fusion algorithms have fairly good
spatial information. However, existing methods have somewhat
high spectral distortions which are more in the case of [10] and
comparatively less in [21]. The color information is also distorted
in the existing algorithms (shown with the white arrows). On the
contrary, the color information is least distorted and the spatial
details are much clearer as the original X-ray image, and the

spectral features are also natural (shown with the white circles) in
the fused images by the proposed method. The same observation
can be realized from Table 4, where the quantitative comparison of
the results is depicted for the clinical applications (highlighted in
bold). Therefore, the proposed method not only preserves the
crucial features existing in both original images but also improves
the color information when compared to the existing methods.

6. Conclusions

In this paper, a novel image fusion framework is proposed for
multi-modal medical images, which is based on non-subsampled
contour transform and directive contrast. Two different rules are
implemented to preserve more information in the fused image
with an improved quality. The low-frequency bands are fused by
considering phase congruency whereas directive contrast is
adopted as the fusion measurement for high-frequency bands. In
our experiments, two groups of CT/MR and two groups of MR-T1/
MR-T2 images are fused using conventional fusion algorithms and
the proposed framework. The visual and statistical comparisons

Fig. 9. Clinical Case 2: fused image from (a) Guihong et al. [10], (b) Yang et al. [12], (c) Das et al. [20], (d) Yang et al. [21], and (e) proposed technique.

Table 4
Evaluation indices for fused images in clinical applications.

Images Indices Wavelet [10] Contourlet [12] NSCT-1 [20] NSCT-2 [21] Proposed

Clinical Case 1 QMI 32.8357 24.7964 40.7922 41.9057 42.1005
QS 0.7949 0.8032 0.8091 0.8147 0.8232

QAB=F 0.5601 0.5668 0.5677 0.5769 0.5749

Clinical Case 2 QMI 12.8196 13.2336 15.0318 15.2769 15.5797
QS 0.7387 0.7478 0.7478 0.7498 0.7584

QAB=F 0.5435 0.5936 0.5961 0.5953 0.5961
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demonstrate that the proposed algorithm better preserves the
image details and significantly improves the image visual effects
than the other fusion methods with very less information distor-
tion. Further, the practical value of the proposed framework in
medical imaging has been validated by the two clinical cases.
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